Improve the Fingerprinting Algorithm Based on Affinity Propagation Clustering to Increase the Accuracy and Speed of Indoor Positioning Systems

Author(s):  
Binh Ngo Van ◽  
Vuong Quang Phuong ◽  
Hoang Do Thanh Tung
Author(s):  
F.Y. Che ◽  
B. Hussain ◽  
K.J. Qiu ◽  
M. Liu ◽  
L. Wu ◽  
...  

2008 ◽  
Vol 9 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Ding-yin Xia ◽  
Fei Wu ◽  
Xu-qing Zhang ◽  
Yue-ting Zhuang

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


Sign in / Sign up

Export Citation Format

Share Document