Show-Based Logical Profound Learning Demonstrates Utilizing ECM Fuzzy Deduction Rules in DDoS Assaults for WLAN 802.11

Author(s):  
D. Sudaroli Vijayakumar ◽  
Sannasi Ganapathy
Keyword(s):  
Author(s):  
Timothy Williamson

The book argues that our use of conditionals is governed by imperfectly reliable heuristics, in the psychological sense of fast and frugal (or quick and dirty) ways of assessing them. The primary heuristic is this: to assess ‘If A, C’, suppose A and on that basis assess C; whatever attitude you take to C conditionally on A (such as acceptance, rejection, or something in between) take unconditionally to ‘If A, C’. This heuristic yields both the equation of the probability of ‘If A, C’ with the conditional probability of C on A and standard natural deduction rules for the conditional. However, these results can be shown to make the heuristic implicitly inconsistent, and so less than fully reliable. There is also a secondary heuristic: pass conditionals freely from one context to another under normal conditions for acceptance of sentences on the basis of memory and testimony. The effect of the secondary heuristic is to undermine interpretations on which ‘if’ introduces a special kind of context-sensitivity. On the interpretation which makes best sense of the two heuristics, ‘if’ is simply the truth-functional conditional. Apparent counterexamples to truth-functionality are artefacts of reliance on the primary heuristic in cases where it is unreliable. The second half of the book concerns counterfactual conditionals, as expressed with ‘if’ and ‘would’. It argues that ‘would’ is an independently meaningful modal operator for contextually restricted necessity: the meaning of counterfactuals is simply that derived compositionally from the meanings of their constituents, including ‘if’ and ‘would’, making them contextually restricted strict conditionals.


2020 ◽  
pp. 31-67
Author(s):  
Timothy Williamson

This chapter argues that the Suppositional Rule is a fallible heuristic, because it has inconsistent consequences. They arise in several ways: (i) it implies standard natural deduction rules for ‘if’, and analogous but incompatible rules for refutation in place of proof; (ii) it implies the equation of the probability of ‘If A, C’ with the conditional probability of C on A, which is subject to the trivialization results of David Lewis and others; (iii) its application to complex attitudes generates further inconsistencies. The Suppositional Rule is compared to inconsistent principles built into other linguistic practices: disquotation for ‘true’ and ‘false’ generate Liar-like paradoxes; tolerance principles for vague expressions generate sorites paradoxes. Their status as fallible, semantically invalid but mostly reliable heuristics is not immediately available to competent speakers.


2007 ◽  
Vol 23 (3) ◽  
pp. 356-372 ◽  
Author(s):  
Jing Mei ◽  
Zuoquan Lin ◽  
Harold Boley ◽  
Jie Li ◽  
Virendrakumar C. Bhavsar

1991 ◽  
Vol 50 (1) ◽  
pp. 714-718
Author(s):  
V. V. Rybakov
Keyword(s):  

2009 ◽  
Vol 157 (1) ◽  
pp. 16-29 ◽  
Author(s):  
Pavel Pudlák
Keyword(s):  

1988 ◽  
Vol 6 (1) ◽  
pp. 1-18
Author(s):  
ÖSTEN DAHL
Keyword(s):  

2020 ◽  
Vol 30 (1) ◽  
pp. 62-117
Author(s):  
Colin Riba

AbstractThis paper surveys a new perspective on tree automata and Monadic second-order logic (MSO) on infinite trees. We show that the operations on tree automata used in the translations of MSO-formulae to automata underlying Rabin’s Tree Theorem (the decidability of MSO) correspond to the connectives of Intuitionistic Multiplicative Exponential Linear Logic (IMELL). Namely, we equip a variant of usual alternating tree automata (that we call uniform tree automata) with a fibered monoidal-closed structure which in particular handles a linear complementation of alternating automata. Moreover, this monoidal structure is actually Cartesian on non-deterministic automata, and an adaptation of a usual construction for the simulation of alternating automata by non-deterministic ones satisfies the deduction rules of the !(–) exponential modality of IMELL. (But this operation is unfortunately not a functor because it does not preserve composition.) Our model of IMLL consists in categories of games which are based on usual categories of two-player linear sequential games called simple games, and which generalize usual acceptance games of tree automata. This model provides a realizability semantics, along the lines of Curry–Howard proofs-as-programs correspondence, of a linear constructive deduction system for tree automata. This realizability semantics, which can be summarized with the slogan “automata as objects, strategies as morphisms,” satisfies an expected property of witness extraction from proofs of existential statements. Moreover, it makes it possible to combine realizers produced as interpretations of proofs with strategies witnessing (non-)emptiness of tree automata.


Sign in / Sign up

Export Citation Format

Share Document