Changes in water quality in Lake P�ij�nne following decrease of effluent load from the pulp and paper industry in 1969?1989

Hydrobiologia ◽  
1992 ◽  
Vol 243-244 (1) ◽  
pp. 395-403 ◽  
Author(s):  
K. E. Granberg
2013 ◽  
Vol 8 (3-4) ◽  
pp. 359-374 ◽  
Author(s):  
M. J. Kossar ◽  
K. J. Amaral ◽  
S. S. Martinelli ◽  
M. C. L. Erbe

The reuse of wastewater by the pulp and paper industry reduces environmental impacts by contributing to raw water conservation, thereby making a greater volume of fresh water available for nobler purposes, and reducing wastewater treatment. This study evaluated a proposed system of water reuse at a Kraft pulp and paper plant in Brazil, based on a survey of water quality required by its consumption points, supplied by its water treatment plant. Results after ultrafiltration included: turbidity of 0,3 NTU and pH 7,5, average values of BOD 66,4 mg/L, COD 9,6 mg/L and the colour of 280,5 ppm Pt were measured after ultrafiltration. The ultrafiltered wastewater was considered available for reuse, and its quality was compared with that of the water supplied by the water treatment plant, which provided for the classification of potential reuse points. Water colour was identified as the limiting factor for reuse; thus the reuse points were two Kraft paper machines, and the water flow to the liquid ring formations that generate the vacuums inside nineteen pumps for these two machines. The advantages of this proposal for water reuse include: ultrafiltered water quality sufficient for the vacuum pumps, the small distance between the point of reused water generation and the paper machines section, and the reused water has no contact with the final product. The calculated cost and return time for the water reuse system was US$ 607.020,00 in 15 years.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


1999 ◽  
Vol 53 (10) ◽  
pp. 1334-1338 ◽  
Author(s):  
Yoshiya Kuide ◽  
Kazuyoshi Yamamoto

Sign in / Sign up

Export Citation Format

Share Document