Testing a new hybrid approach to seismic hazard assessment: an application to the Calabrian Arc (Southern Italy)

1997 ◽  
Vol 14 (2-3) ◽  
pp. 113-126 ◽  
Author(s):  
L. Peruzza ◽  
D. Pantosti ◽  
D. Slejko ◽  
G. Valensise
2011 ◽  
Vol 182 (4) ◽  
pp. 367-379 ◽  
Author(s):  
Nicola Alessandro Pino

AbstractSeismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100–120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques.In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the XXth century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) – both of which are the strongest ever recorded instrumentally in their respective countries –and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismogenic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works are planned, as in the case of the single-span bridge to be built across the Messina straits and the ITER nuclear fusion power plant to be built in Cadarache, close to the location of the Lambesc event, and in regions characterized by high seismic risk, such as southern Apennines.


2018 ◽  
Vol 18 (11) ◽  
pp. 2809-2823 ◽  
Author(s):  
Alicia Rivas-Medina ◽  
Belen Benito ◽  
Jorge Miguel Gaspar-Escribano

Abstract. This paper presents a methodological approach to seismic hazard assessment based on a hybrid source model composed of faults as independent entities and zones containing residual seismicity. The seismic potential of both types of sources is derived from different data: for the zones, the recurrence model is estimated from the seismic catalogue. For fault sources, it is inferred from slip rates derived from palaeoseismicity and GNSS (Global Navigation Satellite System) measurements. Distributing the seismic potential associated with each source is a key question when considering hybrid zone and fault models, and this is normally resolved using one of two possible alternatives: (1) considering a characteristic earthquake model for the fault and assigning the remaining magnitudes to the zone, or (2) establishing a cut-off magnitude, Mc, above which the seisms are assigned to the fault and below which they are considered to have occurred in the zone. This paper presents an approach to distributing seismic potential between zones and faults without restricting the magnitudes for each type of source, precluding the need to establish cut-off Mc values beforehand. This is the essential difference between our approach and other approaches that have been applied previously. The proposed approach is applied in southern Spain, a region of low-to-moderate seismicity where faults move slowly. The results obtained are contrasted with the results of a seismic hazard method based exclusively on the zone model. Using the hybrid approach, acceleration values show a concentration of expected accelerations around fault traces, which is not appreciated in the classic approach using only zones.


2017 ◽  
Vol 65 (1) ◽  
pp. 243-257 ◽  
Author(s):  
Rodolfo Console ◽  
Anna Nardi ◽  
Roberto Carluccio ◽  
Maura Murru ◽  
Giuseppe Falcone ◽  
...  

2018 ◽  
Author(s):  
Alicia Rivas-Medina ◽  
Belén Benito ◽  
Jorge Miguel Gaspar-Escribano

Abstract. This paper presents a methodological approach for seismic hazard assessment that considers a hybrid source model composed by faults as independent entities and zones (containing the residual seismicity). The seismic potential of both types of sources is derived from different data: for the zones, the recurrence model is estimated from the seismic catalog. For fault sources, it is inferred from kinematic parameters derived from paleoseismicty and GNSS measurements. Distributing the seismic potential associated to each source is a key question when considering hybrid models of zone and faults, which some authors solve by assigning to the fault only the earthquakes that exceed a fixed magnitude value Mc. In the present approach, instead of restricting the magnitudes of each type of source, the distribution of seismic potential is carried out only for magnitudes below the maximum magnitude value completely recorded in the catalog (Mmaxc). This is derived from a completeness analysis and can be lower than the Mmax generated by the faults, taking into account that their the recurrence period can be higher than the observation period of the catalog. The proposed approach is applied in southern Spain, a region of low-to-moderate seismic where faults move slowly. The results obtained are contrasted with the results of a seismic hazard model using the traditional zone model exclusively. Results show a concentration of expected accelerations around fault traces using the hybrid approach, which is not appreciated in the classic approach using zones exclusively.


2017 ◽  
Vol 65 (3) ◽  
pp. 575-575
Author(s):  
Rodolfo Console ◽  
Anna Nardi ◽  
Roberto Carluccio ◽  
Maura Murru ◽  
Giuseppe Falcone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document