moderate seismicity
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 65)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 41-63
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Jan Stafleu ◽  
Rien Herber

Abstract. Earthquake site response is an essential part of seismic hazard assessment, especially in densely populated areas. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on the amplitude of ground shaking. Even though the Netherlands is a low- to moderate-seismicity area, the seismic risk cannot be neglected, in particular, because shallow induced earthquakes occur. The aim of this study is to establish a nationwide site-response zonation by combining 3D lithostratigraphic models and earthquake and ambient vibration recordings. As a first step, we constrain the parameters (velocity contrast and shear-wave velocity) that are indicative of ground motion amplification in the Groningen area. For this, we compare ambient vibration and earthquake recordings using the horizontal-to-vertical spectral ratio (HVSR) method, borehole empirical transfer functions (ETFs), and amplification factors (AFs). This enables us to define an empirical relationship between the amplification measured from earthquakes by using the ETF and AF and the amplification estimated from ambient vibrations by using the HVSR. With this, we show that the HVSR can be used as a first proxy for site response. Subsequently, HVSR curves throughout the Netherlands are estimated. The HVSR amplitude characteristics largely coincide with the in situ lithostratigraphic sequences and the presence of a strong velocity contrast in the near surface. Next, sediment profiles representing the Dutch shallow subsurface are categorised into five classes, where each class represents a level of expected amplification. The mean amplification for each class, and its variability, is quantified using 66 sites with measured earthquake amplification (ETF and AF) and 115 sites with HVSR curves. The site-response (amplification) zonation map for the Netherlands is designed by transforming geological 3D grid cell models into the five classes, and an AF is assigned to most of the classes. This site-response assessment, presented on a nationwide scale, is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities.


Standards ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 134-153
Author(s):  
Daniel Looi ◽  
Nelson Lam ◽  
Hing-Ho Tsang

In late 2017, the Malaysian National Annex (NA) to Eurocode 8 (EC8) was released and enacted following some 13 years of deliberations and preparations. The authors of this paper aim to use this article to share their experiences and reflections during this period of developing the first national standard for the seismic design of buildings for Malaysia. To begin with, there were major challenges in implementing the 20-year-old EC8 framework for a country so far away from Europe. The first challenge was adapting the probabilistic seismic hazard assessment (PSHA) methodology in a low-to-moderate seismicity region where the paucity of representative seismic data presented a great deal of uncertainties. To address this situation, imposing a minimum level of seismic hazard was recommended. The second challenge was about dealing with the outdated EC8 site classification scheme, which poorly represents the potential effects of soil amplification in certain geological settings. To address this situation, an alternative site classification scheme in which the site natural period is an explicit modelling parameter was introduced. The third challenge was concerned with difficulties generated by the EC8 provisions mandating Ductility Class Medium (DCM) detailing in certain localities where the level of seismic hazard is predicted to exceed a certain threshold. To address this situation, the viable option of using strength to trade off for ductility was recommended, or in cases where ductility design is needed, a simplified set of code-compliant DCM designs was presented. The fourth challenge was about handling the requirements of EC8 that the majority of buildings are to involve dynamic analysis in their structural design when the majority of practising professionals did not have the skills of exercising proper use of the requisite software. To address this situation, a generalized force method was introduced to control the use dynamic analysis in commercial software. It is hoped that, through sharing the lessons learnt, code drafters for the future would be able to find ways of circumventing the multitude of challenges with clear thinking and pragmatism.


LITOSFERA ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 734-742
Author(s):  
A. S. Zakupin ◽  
N. V. Boginskaya ◽  
D. V. Kostylev

Research subject and methods. The seismicity of the Krilyon Peninsula (Sakhalin Island) after the earthquake on April 23, 2017 (M = 5.0) during the 2018–2021 period was investigated by the method of self-developing processes (SDP).Results. The seismic activity showed a damping trend after the earthquake (and several following aftershocks), with the activation of SDP seismicity observed in two cases. In the study area (40 km within the radius from the epicenter of the Krillon earthquake) and its immediate vicinity (up to 80 km), earthquakes with M = 3.9 and M = 4.3 were observed 74 and 26 days after seismic activations. These earthquakes are considered to be the strongest events occurred in the study area in the period under consideration. The results of the study were compared with the monitoring data of the Kamchatka branch of the Geophysical Survey Russian Academy of Sciences (KB GS RAS) on the volumetric activity of subsoil radon (OA Rn). It was revealed that the OA Rn anomalies detected in November 2018 and January 2020 had appeared several weeks after the identifed SDP. The anomalies were registered at observation points remote from the study area (as well as from the above-mentioned earthquakes) by no more than 50 km. Earthquakes in 2018 (M = 3.9) and 2020 (M = 4.3) occurred 19 and 32 days after the appearance of OA Rn anomalies. In general, the current situation can be assessed as calm, since, according to the analysis data, the seismic activity has no prerequisites for the transition from the decaying stage to the stage of stabilization. As shown in the work, this is a sign for preparing an earthquake with a magnitude higher than 5. Nevertheless, activation and (as a result) earthquakes of moderate strength (M < 5) are possible on a damping trend. Conclusion. It is proposed to take into account the self-developing processes of activation as a primary sign for a change in the geodynamic state of the environment, under which the appearance of OA Rn anomalies is possible. These anomalies are associated with the forecast of moderate seismicity during foreshock or aftershock activations.


Author(s):  
Stephen A. Irinyemi

AbstractDams are parts of the critical infrastructure of any nation, the failure of which would have a high-risk potential on the people and properties within the dam vicinity. Ghana is one of the most seismically active regions in West Africa and has at least 5 large dams across the region, constructed in strategic locations. The area is characterised by low-to-moderate seismicity, yet historical events suggest that major earthquakes that are potentially damaging have occurred in the study basin. This paper summarises the method used to analyse seismic risk and discusses the seismic hazards of three large dams across the study basin based on the seismicity at the dam sites and their risk due to structural properties and the location of each dam. The peak ground acceleration (PGA) values for the dam sites estimated are within the range of (0.31 g and 0.52 g) for 10,000 years return period. The study shows that one large dam has a high-risk class in the basin. This dam should be inspected and analysed for its seismic safety and people’s protection in the downstream paths.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1967-1986
Author(s):  
Dario Zampieri ◽  
Paola Vannoli ◽  
Pierfrancesco Burrato

Abstract. We make a thorough review of geological and seismological data on the long-lived Schio-Vicenza Fault System (SVFS) in northern Italy and present for it a geodynamic and seismotectonic interpretation. The SVFS is a major and high-angle structure transverse to the mean trend of the eastern Southern Alps fold-and-thrust belt, and the knowledge of this structure is deeply rooted in the geological literature and spans more than a century and a half. The main fault of the SVFS is the Schio-Vicenza Fault (SVF), which has a significant imprint in the landscape across the eastern Southern Alps and the Veneto-Friuli foreland. The SVF can be divided into a northern segment, extending into the chain north of Schio and mapped up to the Adige Valley, and a southern one, coinciding with the SVF proper. The latter segment borders to the east the Lessini Mountains, Berici Mountains and Euganei Hills block, separating this foreland structural high from the Veneto-Friuli foreland, and continues southeastward beneath the recent sediments of the plain via the blind Conselve–Pomposa fault. The structures forming the SVFS have been active with different tectonic phases and different styles of faulting at least since the Mesozoic, with a long-term dip-slip component of faulting well defined and, on the contrary, the horizontal component of the movement not being well constrained. The SVFS interrupts the continuity of the eastern Southern Alps thrust fronts in the Veneto sector, suggesting that it played a passive role in controlling the geometry of the active thrust belt and possibly the current distribution of seismic release. As a whole, apart from moderate seismicity along the northern segment and few geological observations along the southern one, there is little evidence to constrain the recent activity of the SVFS. In this context, the SVFS, and specifically its SVF strand, has accommodated a different amount of shortening of adjacent domains of the Adriatic (Dolomites) indenter by internal deformation produced by lateral variation in strength, related to Permian–Mesozoic tectonic structures and paleogeographic domains. The review of the historical and instrumental seismicity along the SVFS shows that it does not appear to have generated large earthquakes during the last few hundred years. The moderate seismicity points to a dextral strike-slip activity, which is also corroborated by the field analysis of antithetic Riedel structures of the fault cropping out along the northern segment. Conversely, the southern segment shows geological evidence of sinistral strike-slip activity. The apparently conflicting geological and seismological data can be reconciled considering the faulting style of the southern segment as driven by the indentation of the Adriatic plate, while the opposite style along the northern segment can be explained in a sinistral opening “zipper” model, where intersecting pairs of simultaneously active faults with a different sense of shear merge into a single fault system.


2021 ◽  
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Jan Stafleu ◽  
Rien Herber

Abstract. Earthquake site-response is an essential part of seismic hazard assessment, especially in densely populated areas. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on seismic wave propagation and in particular on the amplitude of ground shaking, resulting in significant damage on structures despite the fact that the events are of small magnitude. Even though it is a low-to-moderate seismicity area, the seismic risk cannot be neglected, in particular, because shallow induced earthquakes occur. The aim of this study is to establish a nationwide site-response zonation by using the lithostratigraphy, earthquake- and ambient vibration recordings. In the first step, we constrain the parameters (velocity contrast and shear-wave velocity) that are indicative of ground-motion amplification in the Groningen area. For this, we combine ambient vibration and earthquake recordings using resp. the horizontal-to-vertical spectral ratio method (HVSR), borehole empirical transfer functions (ETFs) and amplification factors (AFs). This enables us to define an empirical relationship between measured earthquake amplification from the ETF and AF, and amplification estimated with the HVSR derived from the ambient seismic field. Therewith, we show that the HVSR can be used as a first proxy for amplification. Subsequently, HVSR curves throughout the Netherlands are estimated. The resulting peak amplitudes largely coincide with the in-situ lithostratigraphic sequences and the presence of a strong velocity contrast in the near-surface. Next, sediment profiles representing the Dutch shallow subsurface are categorized into five classes, where each class is representing a level of expected amplification. The mean amplification for each class, and its variability, is quantified using 66 sites with measured earthquake amplification (ETF and AF) and 115 sites with HVSR curves. The site-response (amplification) zonation map for the Netherlands is designed by transforming published geological 3D grid cell models into the five classes and an AF is assigned to most of the classes. This presented site-response assessment on a national scale is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities.


Author(s):  
Leslie Bonthron ◽  
Corey Beck ◽  
Alana Lund ◽  
Xin Zhang ◽  
Yenan Cao ◽  
...  

As the seismic hazard has been updated for the central U.S., state Departments of Transportation (DOTs) find an increasing need to assess the seismic vulnerability of their bridge network. Traditional methods to perform seismic assessment require developing dynamic models for each bridge. However, this approach requires specialized engineering knowledge and information from structural drawings, and is time-consuming. To streamline this important task, a simplified dynamic modeling procedure is described that leverages readily available information from DOTs’ asset management databases. With a minimal amount of additional data items, the asset management database can be used to identify vulnerable bridges rapidly and with sufficient accuracy for the prioritization of retrofit decisions. A detailed analysis of a 100-bridge sample set identified typical vulnerabilities and established corresponding capacity thresholds. The rapid seismic vulnerability assessment methodology is implemented as an Excel macro-enabled tool for bridge owners and asset managers to rapidly assess the vulnerability of each individual bridge based on current information in the database, and then classify the vulnerability of each individual bridge as low, medium, or high. Current DOT databases used for asset management in regions of low-to-moderate seismicity do require some data items be added for a robust assessment. These data items are identified here and leveraged to demonstrate the method. The rapid assessment methodology presented can be implemented to effectively identify the most vulnerable bridges in a bridge network, thus facilitating a rapid state bridge inventory network assessment to prioritize and inform actions such as maintenance and rehabilitation.


2021 ◽  
Author(s):  
Awad A.A. Omran ◽  
Ahmed-Reda M. El-Younsy

Abstract An integrated approach is carried out in a proposed engineering site at Wadi Habib, Egypt. The study aimed to characterize the geological, geotechnical and hydrogeological environment evaluate their suitability for civil engineering constructions. The present study reveals that the area is mainly covered by the Eocene carbonate rocks uncomfortably overlain, in some areas, by the Oligocene gravels. The Pliocene mudstone and the Pleistocene/recent fine clastic deposits are recorded in the subdued ground. The surface and subsurface fractures around Wadi Habib area are mainly represented by high angle normal faults trending NNW- SSE, NW-SE, WNW-ESE and ENE-WSW. The morphometric analysis reveals that Wadi Habib is generally of seventh order, sinuous course, elongated, untainous and hilly, course topographic texture and high resistance and low permeable floor. A total of 32 seismic refraction profiles were conducted in two directions N 35° W and N 55° E. Three geoseismic layers of different lithological, compressional and shear velocities and elastic properties are achieved. The geotechnical parameters involving kinetic elastic moduli, soil material competence parameters and the bearing capacity are estimated and hence indicated the characteristics of the foundation materials for civil engineering constructions in the investigated site. Also, 30 VES’es are implemented and interpreted to test the geological and hydrogeological conditions. Subsurface geoelectrical layers are delineated and verified. The proposed site is characterized by a relatively low to moderate seismicity. The geotechnical parameters of geoseismic layers and the hydrogeological probable troublesome (cavities, fractures, faults) for building structure and soil suitability for foundation purposes are concluded


Solid Earth ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1661-1681
Author(s):  
Marguerite Mathey ◽  
Christian Sue ◽  
Colin Pagani ◽  
Stéphane Baize ◽  
Andrea Walpersdorf ◽  
...  

Abstract. Due to the low to moderate seismicity of the European Western Alps, few focal mechanisms are available in this region to this day, and the corresponding current seismic stress and strain fields remain partly elusive. The development of dense seismic networks in past decades now provides a substantial number of seismic records in the 0–5 magnitude range. The corresponding data, while challenging to handle due to their amount and relative noise, represent a new opportunity to increase the spatial resolution of seismic deformation fields. The aim of this paper is to quantitatively assess the current seismic stress and strain fields within the Western Alps, from a probabilistic standpoint, using new seismotectonic data. The dataset comprises more than 30 000 earthquakes recorded by dense seismic networks between 1989 and 2013 and more than 2200 newly computed focal mechanisms in a consistent manner. The global distribution of P and T axis plunges confirms a majority of transcurrent focal mechanisms in the entire western Alpine realm, combined with pure extension localized in the core of the belt. We inverted this new set of focal mechanisms through several strategies, including a seismotectonic zoning scheme and grid procedure, revealing extensional axes oriented obliquely to the strike of the belt. The Bayesian inversion of this new dataset of focal mechanisms provides a probabilistic continuous map of the style of seismic deformation in the Western Alps. Extension is found to be clustered, instead of continuous, along the backbone of the belt. Robust indications for compression are only observed at the boundary between the Adriatic and Eurasian plates. Short-wavelength spatial variations of the seismic deformation are consistent with surface horizontal Global Navigation Satellite System (GNSS) measurements, as well as with deep lithospheric structures, thereby providing new elements with which to understand the current 3D dynamics of the belt. We interpret the ongoing seismotectonic and kinematic regimes as being controlled by the joint effects of far-field forces – imposed by the anticlockwise rotation of Adria with respect to Europe – and buoyancy forces in the core of the belt, which together explain the short-wavelength patches of extension and marginal compression overprinted on an overall transcurrent tectonic regime.


Sign in / Sign up

Export Citation Format

Share Document