source parameters
Recently Published Documents


TOTAL DOCUMENTS

1487
(FIVE YEARS 398)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Biao Liu ◽  
Yufei Zhao ◽  
Wenbo Wang ◽  
Biwang Liu

The compaction density of sand-gravel materials has a strong gradation correlation, mainly affected by some material source parameters such as P5 content (material proportion with particle size greater than 5 mm), maximum particle size and curvature coefficient. When evaluating the compaction density of sand-gravel materials, the existing compaction density evaluation models have poor robustness and adaptability because they do not take into full consideration the impact of material source parameters. To overcome the shortcomings of existing compaction density models, this study comprehensively considers the impact of material source parameters and compaction parameters on compaction density. Firstly, asymmetric data were fused and a multi-source heterogeneous dataset was established for compaction density analysis. Then, the Elman neural network optimized by the adaptive simulated annealing particle swarm optimization algorithm was proposed to establish the compaction density evaluation model. Finally, a case study of the Dashimen water conservancy project in China is employed to demonstrate the effectiveness and feasibility of the proposed method. The results show that this model performs high-precision evaluation of the compaction density at any position of the entire working area which can timely correct the weak area of compaction density on the spot, and reduce the number of test pit tests.


Author(s):  
Eduardo Huesca-Pérez ◽  
Edahí Gutierrez-Reyes ◽  
Luis Quintanar

ABSTRACT The Gulf of California (GoC) is a complex tectonic boundary that has been instrumented in the past several decades to record broadband seismograms. This volume of data has allowed us to study several source parameters systematically. Before, only a few source parameters of earthquakes greater than magnitude five had been studied in the GoC area. We re-examined the focal mechanisms of several earthquakes in the southern GoC that occurred over the last 20 yr using local–regional distance broadband seismograms. These focal mechanisms were then used as input data to retrieve the time–space history of the rupture for each earthquake. This work contributes to the study of 25 rupture-process models computed with the method proposed by Yagi et al. (1999). To investigate more about the nature of the seismicity in the GoC, we also calculated the non-double-couple component of moment tensors for 45 earthquakes. Previous studies (e.g., Ortega et al., 2013, 2016) have shown that non-double-couple components from moment tensors in this region are associated with complex faulting, suggesting that oblique faults or several parallel faults are interacting simultaneously. Our results show that, at least for moderate earthquakes (5 < M < 6), rupture processes in the GoC show a complex interaction between fault systems. It is revealed on the important contribution of non-double-couple component obtained in the full moment tensor analysis.


MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 435-444
Author(s):  
R S. DATTATRAYAM ◽  
V.P. KAMBLE

The Uttarkashi earthquake of 20 October 1991, which caused widespread damage in the Galhwal Himalayan region, was followed by a prominent aftershock. activity extending over a period of about two months. The aftershock activity was monitored using temporary networks established after the mainshock and the permanent stations in operation in the region. About 142 aftershocks could be located accurately using the data of these stations. The b-value of the Gutenberg-Richter's relationship for the aftershock sequence works out to be 0.6. The temporal distribution of the aftershocks suggests a hyperbolic decay with a decay constant (p) of 1.17. Macroseismic observations derived from field surveys show good agreement with the instrumentally determined source parameters.  


Author(s):  
Calvin P Baker ◽  
Johan Sundberg ◽  
Suzanne C Purdy ◽  
Te Oti Rakena ◽  
Sylvia H de S Leão

MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 365-370
Author(s):  
R.S. DATTATRAYAM

Fault plane solutions and focal depths for three crustal events occurring in the Himalayan collision zone have been obtained using synthetic waveform modelling. Two crustal events with their epicenters in the Tibetan plateau show large component of normal faulting with east-west trading T-axes. The third event with It’s epicenter north of Main Boundary Thrust (MBT) shows reverse faulting with the nodal planes paralleling the local structural trend. All the three crustal events studied have occurred at shallow focal depths of less than 15 km. The Inferred source parameters of these events are discussed In the light of active tectonics of the region.  


Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 325-343
Author(s):  
Elisabeth Gallant ◽  
Lawrence Cole ◽  
Charles Connor ◽  
Amy Donovan ◽  
Danielle Molisee ◽  
...  

Vent opening hazard models are routinely used as inputs for assessing distal volcanic hazards (lava flows, tephra fallout) in distributed volcanic fields. These vent opening hazard models have traditionally relied on the location of mapped vents; seldom have they taken into account how vents are linked in space and time. We show that inputs needed to appropriately model distal hazards are fundamentally different than thoses required to model near-vent hazards (ground deformation). We provide a computational model to obtain more appropriate eruptive source parameters (ESPs) for distal volcanic hazard sources and show the utility of our code through three examples. The code's strength is that it links events based on the spatio-temporal relationships of vents through heirarchical clustering. The development of the code and its strenghts and weaknesses are discussed. This work challenges previous ideas about ESPs and we hope this work leads to further improvement in hazard assessment methods.


2021 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Xiang Zhou ◽  
Biao Li ◽  
Chunming Yang ◽  
Weiming Zhong ◽  
Quanfu Ding ◽  
...  

The diversion tunnel of a hydropower station is characterized by low quality surrounding rock and weak structural planes. During excavation, rock mass spalling and cracking frequently occur. To evaluate the stability of a rock mass during tunnel excavation, high-precision microseismic monitoring technology was introduced to carry out real-time monitoring. Based on the temporal and spatial distribution characteristics of microseismic events, the main damage areas and their influencing factors of tunnel rock mass were studied. By analyzing the source characteristic parameters of the concentration area of microseismic activities, the rock fracture mechanism of the concentration area was revealed. The 3D numerical model of diversion tunnel was established, and the deformation characteristics of the rock mass under the control of different combination types of weak structural planes were obtained. The results showed that the microseismic event was active between 29 October 2020 and 6 November 2020, and the energy release increased sharply. The main damage areas of the rock mass were located at Stakes K0 + 500–K0 + 600 m. Microseismic source parameters revealed that shear failure or fault-slip failure induced by geological structures had an important influence on the stability of the surrounding rock. The numerical simulation results were consistent with the microseismic monitoring results and indicated that among the three kinds of structural plane combination types, including “upright triangle”, “inverted triangle” and “nearly parallel”, the “upright triangle” structure had the most significant influence on the stability of the surrounding rock. In addition, the maximum displacement of the surrounding rock had a trend of lateral migration to the larger dip angle in the three combined structural plane types. The research results will provide significant references for the safety evaluation and construction design of similar tunnels.


Author(s):  
Matteo Picozzi ◽  
Fabrice Cotton ◽  
Dino Bindi ◽  
Antonio Emolo ◽  
Guido Maria Adinolfi ◽  
...  

ABSTRACT Fault zones are major sources of hazard for many populated regions around the world. Earthquakes still occur unanticipated, and research has started to observe fault properties with increasing spatial and temporal resolution, having the goal of detecting signs of stress accumulation and strength weakening that may anticipate the rupture. The common practice is monitoring source parameters retrieved from measurements; however, model dependence and strong uncertainty propagation hamper their usage for small and microearthquakes. Here, we decipher the ground motion (i.e., ground shaking) variability associated with microseismicity detected by dense seismic networks at a near-fault observatory in Irpinia, Southern Italy, and obtain an unprecedentedly sharp picture of the fault properties evolution both in time and space. We discuss the link between the ground-motion intensity and the source parameters of the considered microseismicity, showing a coherent spatial distribution of the ground-motion intensity with that of corner frequency, stress drop, and radiation efficiency. Our analysis reveals that the ground-motion intensity presents an annual cycle in agreement with independent geodetic displacement observations from two Global Navigation Satellite System stations in the area. The temporal and spatial analyses also reveal a heterogeneous behavior of adjacent fault segments in a high seismic risk Italian area. Concerning the temporal evolution of fault properties, we highlight that the fault segment where the 1980 Ms 6.9 Irpinia earthquake nucleated shows changes in the event-specific signature of ground-motion signals since 2013, suggesting changes in their frictional properties. This evidence, combined with complementary information on the earthquake frequency–magnitude distribution, reveals differences in fault segment response to tectonic loading, suggesting rupture scenarios of future moderate and large earthquakes for seismic hazard assessment.


Author(s):  
A. Filippova ◽  
N. Gileva

We calculated seismic moment tensors in a double-couple approximation (focal mechanisms, scalar seismic moments, and moment magnitudes) and hypocentral depths for twenty earthquakes with Mw≥4.2 that occurred in the Baikal region and Transbaikalia in 2015. The initial data were amplitude spectra of Rayleigh and Love waves obtained from their records at the broadband seismic stations of the IRIS and the DK networks and first-motion polarities of body waves recorded at regional distances. A combination of the normal fault and strike-slip movements dominate in the sources of the major part of the study earthquakes. For the strongest of the considered seismic events (Mw≥4.6), the subvertical compression and subhorizontal tension in the SE-NW direction prevail, i.e. the tension is perpendicular to the main structures of the Baikal rift zone. The seismic events with Mw<4.6 are characterized by a more scattered orientation of compression and tension axis that could be caused, for instance, by stress redistribution in small-scale crustal blocks after stronger earthquakes. The obtained results are of great value for issues concerned with seismic hazard assessment and the development of geodynamical models of the lithosphere evolution of the study region.


Author(s):  
A. Malovichko ◽  
R. Dyagilev ◽  
F. Verkholantsev ◽  
I. Golubeva ◽  
T. Zlobina

The article summarizes information about seismic network in the Urals and Western Siberia region, describes processing technique, presents a short analysis of the seismic activity in 2015. Seismic network capability is shown for the whole territory under control. It was found that about 82 % of registered events are explosions in mines and open pits, 37 events are natural or induced ones. For the strongest induced events, variants of source parameters obtained by different agencies are shown. The strongest tectonic event in 2015 and for the last century (after 1914) is the Middle Ural earthquake with ML=4.7, I0=6 that occurred on October 18, 2015.


Sign in / Sign up

Export Citation Format

Share Document