On Steiner trees for bounded point sets

1981 ◽  
Vol 11 (3) ◽  
Author(s):  
F.R.K. Chung ◽  
R.L. Graham
Keyword(s):  
2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2010 ◽  
Vol 36 (8) ◽  
pp. 1073-1083 ◽  
Author(s):  
Xu-Fang PANG ◽  
Ming-Yong PANG ◽  
Chun-Xia XIAO
Keyword(s):  

1992 ◽  
Author(s):  
L. V. Meisel ◽  
M. A. Johnson

1986 ◽  
Vol 12 (1) ◽  
pp. 377 ◽  
Author(s):  
Morgan
Keyword(s):  

2019 ◽  
Vol 15 (3) ◽  
pp. 1-16
Author(s):  
Avrim Blum ◽  
Sariel Har-Peled ◽  
Benjamin Raichel

Author(s):  
Alessandro Hill ◽  
Roberto Baldacci ◽  
Stefan Voß
Keyword(s):  

Author(s):  
Martin Balko ◽  
Manfred Scheucher ◽  
Pavel Valtr

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
François Dayrens ◽  
Simon Masnou ◽  
Matteo Novaga ◽  
Marco Pozzetta

AbstractWe introduce a notion of connected perimeter for planar sets defined as the lower semicontinuous envelope of perimeters of approximating sets which are measure-theoretically connected. A companion notion of simply connected perimeter is also studied. We prove a representation formula which links the connected perimeter, the classical perimeter, and the length of suitable Steiner trees. We also discuss the application of this notion to the existence of solutions to a nonlocal minimization problem with connectedness constraint.


Sign in / Sign up

Export Citation Format

Share Document