sparse approximation
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 46)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


2021 ◽  
Vol 40 (4) ◽  
pp. S92
Author(s):  
A. Dorken Gallastegi ◽  
U. Dorken Gallastegi ◽  
B. Yağmur ◽  
S. Karaca ◽  
Ü. Kahraman ◽  
...  

2021 ◽  
Author(s):  
Gargi Mishra ◽  
Supriya Bajpai

It is highly challenging to obtain high performance with limited and unconstrained data in real time face recognition applications. Sparse Approximation is a fast and computationally efficient method for the above application as it requires no training time as compared to deep learning methods. It eliminates the training time by assuming that the test image can be approximated by the sum of individual contributions of the training images from different classes and the class with maximum contribution is closest to the test image. The efficiency of the Sparse Approximation method can be further increased by providing high quality features as input for classification. Hence, we propose to integrate pre-trained CNN architecture to extract the highly discriminative features from the image dataset for Sparse classification. The proposed approach provides better performance even for one training image per class in complex environment as compared to the existing methods. Highlight of the present approach is the results obtained for LFW dataset with one and thirteen training images per class are 84.86% and 96.14% respectively, whereas the existing deep learning methods use a large amount of training data to achieve comparable results.


2021 ◽  
Author(s):  
Guisheng Wang

<div>Sparse approximation is critical to the applications of signal or image processing, and it is conducive to estimate the sparse signals with the joint efforts of transformation analysis. In this study, a simultaneous Bayesian framework was extended for sparse approximation by structured shared support, and a simultaneous sparse learning algorithm of structured approximation (SSL-SA) is proposed with transformation analysis which leads to the feasible solutions more sensibly. Then the improvements of sparse Bayesian learning and iterative reweighting were embedded in the framework to achieve speedy convergence as well as high efficiency with robustness. Furthermore, the iterative optimization and transformation analysis were embedded in the overall learning process to obtain the relative optima for sparse approximation. Finally, compared to conventional reweighting algorithms for simultaneous sparse models with l1 and l2, simulation results present the preponderance of the proposed approach to solve the sparse structure and iterative redundancy in processing sparse signals. The fact indicates that proposed method will be effective to sparsely approximate the various signals and images, which does accurately analyse the target in optimal transformation. It is envisaged that the proposed model could be suitable for a wide range of data in sparse separation and signal denosing.</div>


2021 ◽  
Author(s):  
Guisheng Wang

<div>Sparse approximation is critical to the applications of signal or image processing, and it is conducive to estimate the sparse signals with the joint efforts of transformation analysis. In this study, a simultaneous Bayesian framework was extended for sparse approximation by structured shared support, and a simultaneous sparse learning algorithm of structured approximation (SSL-SA) is proposed with transformation analysis which leads to the feasible solutions more sensibly. Then the improvements of sparse Bayesian learning and iterative reweighting were embedded in the framework to achieve speedy convergence as well as high efficiency with robustness. Furthermore, the iterative optimization and transformation analysis were embedded in the overall learning process to obtain the relative optima for sparse approximation. Finally, compared to conventional reweighting algorithms for simultaneous sparse models with l1 and l2, simulation results present the preponderance of the proposed approach to solve the sparse structure and iterative redundancy in processing sparse signals. The fact indicates that proposed method will be effective to sparsely approximate the various signals and images, which does accurately analyse the target in optimal transformation. It is envisaged that the proposed model could be suitable for a wide range of data in sparse separation and signal denosing.</div>


Sign in / Sign up

Export Citation Format

Share Document