The association of coronal mass ejection transients with other forms of solar activity

Solar Physics ◽  
1979 ◽  
Vol 61 (1) ◽  
pp. 201-215 ◽  
Author(s):  
R. H. Munro ◽  
J. T. Gosling ◽  
E. Hildner ◽  
R. M. MacQueen ◽  
A. I. Poland ◽  
...  
2008 ◽  
Vol 4 (T27A) ◽  
pp. 79-103
Author(s):  
James A. Klimchuk ◽  
Lidia van Driel-Gesztelyi ◽  
Carolus J. Schrijver ◽  
Donald B. Melrose ◽  
Lyndsay Fletcher ◽  
...  

Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.


1996 ◽  
Vol 154 ◽  
pp. 221-224
Author(s):  
P.K. Manoharan

AbstractInterplanetary scintillation measurements obtained inside 200 R⊙ using the Ooty Radio Telescope during August 1986 - April 1991 have been analysed to study the interplanetary disturbances (or events) and their occurrence rates at various phases of the solar cycle. The disturbances are identified by the increase in the level of scintillation compared with the expected value. In total, 735 events have been identified. The results show a rate of 0.49 events per day near solar maximum and a low rate of 0.16 events per day during minimum of activity. The results are compared with coronal mass ejection (CME) rates and transients rates obtained from the Doppler scintillation measurements.


We summarize the observational aspects of the transient solar coronal features known as coronal mass ejections. Recognizing the importance of understanding this form of solar activity, particularly in the light of relations to flare and prominence activity, and geomagnetic effects, we consider the spectrum of models which have been used to describe these events and assess their viability. We find most models to be unphysical and all represent a gross over simplification of solar conditions. In conclusion we set up a cartoon model which best fits the observations and which we feel should be further developed.


2010 ◽  
Vol 721 (2) ◽  
pp. 1579-1584 ◽  
Author(s):  
Claire L. Raftery ◽  
Peter T. Gallagher ◽  
R. T. James McAteer ◽  
Chia-Hsien Lin ◽  
Gareth Delahunt

2006 ◽  
Vol 642 (1) ◽  
pp. 541-553 ◽  
Author(s):  
J. Krall ◽  
V. B. Yurchyshyn ◽  
S. Slinker ◽  
R. M. Skoug ◽  
J. Chen

2009 ◽  
Vol 114 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
R. Kataoka ◽  
T. Ebisuzaki ◽  
K. Kusano ◽  
D. Shiota ◽  
S. Inoue ◽  
...  

Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
Jason E. Kooi ◽  
Madison L. Ascione ◽  
Lianis V. Reyes-Rosa ◽  
Sophia K. Rier ◽  
Mohammad Ashas

2016 ◽  
Vol 12 (S327) ◽  
pp. 67-70
Author(s):  
J. Palacios ◽  
C. Cid ◽  
E. Saiz ◽  
A. Guerrero

AbstractWe have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.


Sign in / Sign up

Export Citation Format

Share Document