fast wind
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 924 (2) ◽  
pp. L22
Author(s):  
Zilu Zhou ◽  
Xiaojun Xu ◽  
Pingbing Zuo ◽  
Yi Wang ◽  
Qi Xu ◽  
...  

Abstract Plasma heating at thin current sheets in the solar wind is examined using magnetic field and plasma data obtained by the WIND spacecraft in the past 17 years from 2004 to 2019. In this study, a thin current sheet is defined by an abrupt rotation (larger than 45°) of the magnetic field direction in 3 s. A total of 57,814 current sheets have been identified, among which 25,018 current sheets are located in the slow wind and 19,842 current sheets are located in the fast wind. Significant plasma heating is found at current sheets in both slow and fast wind. Proton temperature increases more significantly at current sheets in the fast wind than in the slow wind, while the enhancement in electron temperature is less remarkable at current sheets in the fast wind. The results reveal that plasma heating commonly exists at thin current sheets in the solar wind regardless of the wind speed, but the underlying heating mechanisms might be different.


2021 ◽  
Vol 922 (2) ◽  
pp. 198
Author(s):  
Jiawei Tao ◽  
Linghua Wang ◽  
Gang Li ◽  
Robert F. Wimmer-Schweingruber ◽  
Chadi Salem ◽  
...  

Abstract Here we present a statistical study of the ∼0.15–1.5 keV suprathermal electrons observed in uncompressed/compressed slow and fast solar wind around 59 corotating interaction regions (CIRs) with good measurements by Wind 3DP from 1995 through 1997. For each of these CIRs, we fit the strahl and halo energy spectra at ∼0.15–1.5 keV to a Kappa function with a Kappa index κ and kinetic temperature T eff. We find that the ∼0.15–1.5 keV strahl electrons behave similarly in both slow and fast wind: the strahl number density n s positively correlates with the solar wind electron temperature T e and interplanetary magnetic field magnitude ∣B∣, while the strahl pitch angle width Θ s decreases with the solar wind speed V sw. These suggest that the strahl electrons are generated by a similar/same process at the Sun in both slow and fast wind that produces these correlations, and the scattering efficiency of strahl in the interplanetary medium (IPM) decreases with V sw. The ∼0.15–1.5 keV halo electrons also behave similarly in both slow and fast wind: the halo parameter positively correlates with the corresponding strahl parameter, and the halo number density n h positively correlates only with T e . These indicate that the halo formation process in the IPM retains most of the strahl properties, but it erases the relationship between n s and ∣B∣. In addition, κ in compressed wind distributes similarly to that in uncompressed wind, for both the strahl and halo. It shows that CIRs at 1 au are not a significant/effective acceleration source for the strahl and halo.


2021 ◽  
Vol 921 (2) ◽  
pp. 181
Author(s):  
Ziyan Xu ◽  
Gregory J. Herczeg ◽  
Christopher M. Johns-Krull ◽  
Kevin France

Abstract We present an analysis of wind absorption in the C ii λ1335 doublet toward 40 classical T Tauri stars with archival far-ultraviolet (FUV) spectra obtained by the Hubble Space Telescope. Absorption features produced by fast or slow winds are commonly detected (36 out of 40 targets) in our sample. The wind velocity of the fast wind decreases with disk inclination, which is consistent with expectations for a collimated jet. Slow wind absorption is mostly detected in disks with intermediate or high inclination, without a significant dependence of wind velocity on disk inclination. Both the fast and slow wind absorption are preferentially detected in FUV lines of neutral or singly ionized atoms. The Mg ii λ λ2796, 2804 lines show wind absorption consistent with the absorption in the C ii lines. We develop simplified semi-analytical disk/wind models to interpret the observational disk wind absorption. Both fast and slow winds are consistent with expectations from a thermal-magnetized disk wind model and are generally inconsistent with a purely thermal wind. Both the models and the observational analysis indicate that wind absorption occurs preferentially from the inner disk, which offers a wind diagnostic in complement to optical forbidden line emission that traces the wind in larger volumes.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5167
Author(s):  
Jordi Cusidó ◽  
Arnau López ◽  
Mattia Beretta

Wind energy is a form of renewable energy with the highest installed capacity. However, it is necessary to reduce the operation and maintenance costs and extend the lifetime of wind turbines to make wind energy more competitive. This paper presents a power-derating-based Fault-Tolerant Control (FTC) model in 2 MW three-bladed wind turbines implemented using the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine simulator. This control strategy is potentially supported by the health status of the gearbox, which was predicted by means of algorithms and quantified in an indicator denominated as a merge developed by SMARTIVE, a pioneering of in this idea. Fuzzy logic was employed in order to decide whether to down-regulate the output power or not, and to which level to adjust to the needs of the turbines. Simulation results demonstrated that a reduction in the power output resulted in a safer operation, since the stresses withstood by the blades and tower significantly decreased. Moreover, the results supported empirically that a diminution in the generator torque and speed was acheived, resulting in a drop in the gearbox bearing and oil temperatures. By implementing this power-derating FTC, the downtime due to failure stops could be controlled, and thus the power production noticeably grew. It has been estimated that more than 325,000 tons of CO2 could be avoided yearly if implemented globally.


2021 ◽  
Vol 21 (2) ◽  
pp. 23-31
Author(s):  
Woonyong Hwang

In order to check the risk of hydrogen peroxide leakage from the seaport, the leakage amount was changed from 1.0 ton to 10.0 tons, with the maximum and minimum diffusion distances per month in 2020 being subsequently calculated. A total of 82 scenarios were created to confirm the change in the diffusion distance according to the amount of leakage. The scenario was analyzed based on the distance at which the risk concentration was maintained through the ALOHA Air Dispersion Models. As indicated by the analysis, when the amount of leakage is relatively large, the temperature is also high and the wind speed is fast - resulting in the maximum spread. However, when the amount of leakage was relatively minimal, the temperature was low and the wind speed remained fast - this kept diffusion to the minimum. Concerning characteristics of fast wind speeds, the dispersion length changed based on amounts of leakages where PAC-1 contains 2.0 tons, PAC-2 contains 4.0 tons, and PAC-3 contains 5.0 tons. In addition, when the amount of leakage equaled 10.0 tons, and the wind speed was high, the dispersion length reached up to 10 kms. In light of this, it was confirmed that even adjacent administrative districts were affected. Therefore, it is necessary to establish appropriate measures to prevent damage by utilizing the diffusion distance caused by chemical leakages.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1791
Author(s):  
Afef Fekih ◽  
Saleh Mobayen ◽  
Chih-Chiang Chen

This paper proposes an adaptive fault tolerant control (FTC) design for a variable speed wind turbine (WT) operating in the high wind speeds region. It aims at mitigating pitch actuator faults and regulating the generator power to its rated value, thereby reducing the mechanical stress in the high wind speeds region. The proposed FTC design implements a sliding mode control (SMC) approach with an adaptation law that estimates the upper bounds of the uncertainties. System stability and uniform boundedness of the outputs was proven using the Lyapunov stability theory. The proposed approach was validated on a 5 MW three-blade wind turbine modeled using the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Structures and Turbulence (FAST) wind turbine simulator. The controller’s performance was assessed in the presence of several pitch actuator faults and turbulent wind conditions. Its performance was also compared to that of a standard SMC approach. Mitigation of blade pitch actuator faults, generation of uniform power, smoother pitching actions and reduced chattering compared to standard SMC approach are among the main features of the proposed design.


Author(s):  
Ada Canet ◽  
Ana I Gómez de Castro

Abstract Recent observations of the Earth’s exosphere revealed the presence of an extended hydrogenic component that could reach distances beyond 40 planetary radii. Detection of similar extended exospheres around Earth-like exoplanets could reveal crucial facts in terms of habitability. The presence of these rarified hydrogen envelopes is extremely dependent of the planetary environment, dominated by the ionizing radiation and plasma winds coming from the host star. Radiation and fast wind particles ionize the uppermost layers of planetary atmospheres, especially for planets orbiting active, young stars. The survival of the produced ions in the exosphere of such these planets is subject to the action of the magnetized stellar winds, particularly for unmagnetized bodies. In order to address these star-planet interactions, we have carried out numerical 2.5D ideal MHD simulations using the PLUTO code to study the dynamical evolution of tenuous, hydrogen-rich, Earth-like extended exospheres for an unmagnetized planet, at different stellar evolutionary stages: from a very young, solar-like star of 0.1 Gyr to a 5.0 Gyr star. For each star-planet configuration, we show that the morphology of extended Earth-like hydrogen exospheres is strongly dependent of the incident stellar winds and the produced ions present in these gaseous envelopes, showing that the ionized component of Earth-like exospheres is quickly swept by the stellar winds of young stars, leading to large bow shock formation for later stellar ages.


2021 ◽  
Author(s):  
S. A. Hosseini ◽  
J.-F. Toubeau ◽  
N. Singh ◽  
J. D. M. De Kooning ◽  
N. Kayedpour ◽  
...  
Keyword(s):  

2020 ◽  
Vol 905 (1) ◽  
pp. L2
Author(s):  
Xiaoyang Chen ◽  
Kohei Ichikawa ◽  
Hirofumi Noda ◽  
Taiki Kawamuro ◽  
Toshihiro Kawaguchi ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. L8
Author(s):  
Lidia M. Oskinova ◽  
Vasilii V. Gvaramadze ◽  
Götz Gräfener ◽  
Norbert Langer ◽  
Helge Todt

The merger of two white dwarfs (WDs) is a natural outcome of the evolution of many binary stars. Recently, a WD merger product, IRAS 00500+6713, was identified. IRAS 00500+6713 consists of a central star embedded in a circular nebula. The analysis of the optical spectrum of the central star revealed that it is hot, hydrogen, and helium free, and it drives an extremely fast wind with a record breaking speed. The nebula is visible in infrared and in the [O III] λ5007 Å line images. No nebula spectroscopy was obtained prior to our observations. Here we report the first deep X-ray imaging spectroscopic observations of IRAS 00500+6713. Both the central star and the nebula are detected in X-rays, heralding the WD merger products as a new distinct type of strong X-ray sources. Low-resolution X-ray spectra reveal large neon, magnesium, silicon, and sulfur enrichment of the central star and the nebula. We conclude that IRAS 00500+6713 resulted from a merger of an ONe and a CO WD, which supports earlier suggestion for a super-Chandrasekhar mass of this object. X-ray analysis indicates that the merger was associated with an episode of carbon burning and possibly accompanied by an SN Iax. In X-rays, we observe the point source associated with the merger product while the surrounding diffuse nebula is a supernova remnant. IRAS 00500+6713 will likely terminate its evolution with another peculiar Type I supernova, where the final core collapse to a neutron star might be induced by electron captures.


Sign in / Sign up

Export Citation Format

Share Document