The raccoon lateral cervical nucleus: mediolateral organization of GABA-positive and GABA-negative neurons and fibers

1996 ◽  
Vol 193 (5) ◽  
Author(s):  
Jonas Broman ◽  
BenjaminH. Pubols

1991 ◽  
Vol 555 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Mark V. Smith ◽  
A. Vania Apkarian


Author(s):  
Annamaria Grandis ◽  
Anna Gardini ◽  
Claudio Tagliavia ◽  
Giulia Salamanca ◽  
Jean-Marie Graïc ◽  
...  

AbstractThe presence of the lateral cervical nucleus (LCN) in different mammals, including humans, has been established in a number of anatomical research works. The LCN receives its afferent inputs from the spinocervical tract, and conveys this somatosensory information to the various brain areas, especially the thalamus. In the present study, the organization of the calf and pig LCN was examined through the use of thionine staining and immunohistochemical methods combined with morphometrical analyses. Specifically, the localization of calbindin-D28k (CB-D28k) and neuronal nitric oxide synthase (nNOS) in the LCN was investigated using the immunoperoxidase method. Calf and pig LCN appear as a clearly defined column of gray matter located in the three cranial segments of the cervical spinal cord. Thionine staining shows that polygonal neurons represent the main cell type in both species. The calf and pig LCN contained CB-D28k-immunoreactive (IR) neurons of varying sizes. Large neurons are probably involved in the generation of the cervicothalamic pathway. Small CB-D28k-IR neurons, on the other hand, could act as local interneurons. The immunoreactivity for nNOS was found to be mainly located in thin neuronal processes that could represent the terminal axonal portion of nNOS-IR found in laminae III e IV. This evidence suggests that nitric oxide (NO) could modulate the synaptic activity of the glutamatergic spinocervical tracts. These findings suggest that the LCN of Artiodactyls might play an important role in the transmission of somatosensory information from the spinal cord to the higher centers of the brain.





1988 ◽  
Vol 274 (4) ◽  
pp. 467-482 ◽  
Author(s):  
Jonas Broman ◽  
Jan Westman


1965 ◽  
Vol 209 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. T. Kitai ◽  
H. Ha ◽  
F. Morin

The lateral cervical nucleus (LCN) of the dog ( Canis familiaris) was investigated by histological and microelectrode technique. The LCN extends from the obex to the upper C3 and is located ventrolateral to the dorsal horn. Cell counts showed over 6,000 cells in the nuclei on both sides and the cell size varied from 20 to 45 µ. Single-unit analysis of the 220 neurons showed that the majority of cells responded to touch, some to pressure, some to pressure and touch, and an extremely limited number to joint movement. All responses were recorded from the ipsilateral half of the body. More than half of these neurons had small peripheral receptive fields located mostly in the distal parts of the limbs. The rest, with large receptive fields, were located mainly in the proximal parts of the limbs and the trunk. The peripheral receptive fields were almost equally distributed among the forelimb, trunk, and hindlimb for touch. The prominence of the hindlimb representation over the forelimb was found for pressure and for touch and pressure. The results indicate that the organization of the afferent input to the LCN has some similarity to that of the medial lemniscus system.



1978 ◽  
Vol 41 (6) ◽  
pp. 1511-1534 ◽  
Author(s):  
A. D. Craig ◽  
D. N. Tapper

1. The lateral cervical nucleus (LCN) was investigated with extracellular recordings in the anesthetized cat. A total of 556 LCN units were characterized; the locations of most of these were histologically verified. Half of these had receptive fields on the rostral third of the ipsilateral body surface including the face; 14% had fields on the thorax or abdomen, 33% had fields on the hindlimb or tail, and about 3% had receptive fields larger than one limb. 2. The LCN was observed to be somatotopically organized in experiments using angled microelectrode penetrations. Hindlimb units were dorsolateral, forelimb units ventromedial, and face units most medial within the LCN. In regions where LCN cells were present only in the medial portion of the dorsolateral funiculus, they were all forelimb units. 3. A special subpopulation (17%) of cells were clustered most ventromedially in the LCN. These units had large or disjoint receptive fields, and/or responded to deep, visceral, or noxious stimulation. A third of these did not project in the medial lemniscus (ML); many were synaptically activated by stimulation of the ML. Those that did project in the ML had significantly longer latencies than all other LCN units. It is suggested that this subpopulation contains local LCN interneurons. 4. The specific mechanoreceptor inputs were identified for each of 121 projecting LCN units. Receptor inputs were uniform across each receptive field; that is, each unit that responded to a given receptor type was observed to respond to receptors of that type throughout its receptive field. Input from large-fiber-diameter, velocity-sensitive mechanoreceptors was predominant. The absence of input from slowly adapting type I and II receptors and from joint receptors was confirmed. A significant number of units (17.3%) could be driven by only one receptor type. The LCN sample profile agrees closely with the receptor representation in the hindlimb portion of the spinocervical tract. It is concluded that these data that anatomic specification of convergence occurs in the LCN with respect to receptor connectivity, and that this specification originates in lamina IV of the dorsal horn. 5. Stimulation of the dorsal column nuclei synaptically excited 23% of the LCN units tested. In two cases it was possible to demonstrate, by collision, that this occurred via collaterals of spinocervical tract axons. It is concluded that some spinocervical axons have collaterals terminating in the rostral parts of the dorsal column nuclei.



1963 ◽  
Vol 204 (4) ◽  
pp. 667-672 ◽  
Author(s):  
F. Morin ◽  
S. T. Kitai ◽  
H. Portnoy ◽  
C. Demirjian

The lateral cervical nucleus was explored with microelectrodes in lightly anesthetized cats. Extracellular responses were recorded from 160 neurons following physiological stimulation of the ipsilateral side of the body from the neck to the tail. The stimuli activating the neurons were touch, pressure, and joint movement. Neurons responding to touch were more prevalent than neurons responding to pressure on the skin or on deep structures; those responding to joint movements were a small fraction of the neuronal sample studied. For the three stimuli tested, the limbs were more prominently represented than the trunk. Tactile and pressure peripheral fields activating single neurons were of three types: restricted (a few hairs, small areas within one segment of a limb), large (wide areas of the trunk, whole limb), and very large (whole ipsilateral aspect of the body, both limbs). Restricted fields were less numerous than the large fields. One-third of the fields activating single neurons following tactile stimulation was of the very large type. The existence of the very large fields indicated a high degree of convergence of afferents onto neurons of the cervical nucleus.



1980 ◽  
Vol 68 (3) ◽  
pp. 531-547 ◽  
Author(s):  
T.E.A. Peto


Sign in / Sign up

Export Citation Format

Share Document