somatosensory information
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 62)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Elena Amoruso ◽  
Lucy Dowdall ◽  
Mathew Thomas Kollamkulam ◽  
Obioha Ukaegbu ◽  
Paulina Kieliba ◽  
...  

Abstract Objective Considerable resources are being invested to enhance the control and usability of artificial limbs through the delivery of unnatural forms of somatosensory feedback. Here, we investigated whether intrinsic somatosensory information from the body part(s) remotely controlling an artificial limb can be leveraged by the motor system to support control and skill learning. Approach In a placebo-controlled design, we used local anaesthetic to attenuate somatosensory inputs to the big toes while participants learned to operate through pressure sensors a toe-controlled and hand-worn robotic extra finger. Motor learning outcomes were compared against a control group who received sham anaesthetic and quantified in three different task scenarios: while operating in isolation from, in synchronous coordination, and collaboration with, the biological fingers. Main results Both groups were able to learn to operate the robotic extra finger, presumably due to abundance of visual feedback and other relevant sensory cues. Importantly, the availability of displaced somatosensory cues from the distal bodily controllers facilitated the acquisition of isolated robotic finger movements, the retention and transfer of synchronous hand-robot coordination skills, and performance under cognitive load. Motor performance was not impaired by toes anaesthesia when tasks involved close collaboration with the biological fingers, indicating that the motor system can close the sensory feedback gap by dynamically integrating task-intrinsic somatosensory signals from multiple, and even distal, body- parts. Significance Together, our findings demonstrate that there are multiple natural avenues to provide intrinsic surrogate somatosensory information to support motor control of an artificial body part, beyond artificial stimulation.


2022 ◽  
Vol 119 (1) ◽  
pp. e2116616119
Author(s):  
Moritz M. Nickel ◽  
Laura Tiemann ◽  
Vanessa D. Hohn ◽  
Elisabeth S. May ◽  
Cristina Gil Ávila ◽  
...  

The perception of pain is shaped by somatosensory information about threat. However, pain is also influenced by an individual’s expectations. Such expectations can result in clinically relevant modulations and abnormalities of pain. In the brain, sensory information, expectations (predictions), and discrepancies thereof (prediction errors) are signaled by an extended network of brain areas which generate evoked potentials and oscillatory responses at different latencies and frequencies. However, a comprehensive picture of how evoked and oscillatory brain responses signal sensory information, predictions, and prediction errors in the processing of pain is lacking so far. Here, we therefore applied brief painful stimuli to 48 healthy human participants and independently modulated sensory information (stimulus intensity) and expectations of pain intensity while measuring brain activity using electroencephalography (EEG). Pain ratings confirmed that pain intensity was shaped by both sensory information and expectations. In contrast, Bayesian analyses revealed that stimulus-induced EEG responses at different latencies (the N1, N2, and P2 components) and frequencies (alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Expectations, however, shaped alpha and beta oscillations before the painful stimuli. These findings indicate that commonly analyzed EEG responses to painful stimuli are more involved in signaling sensory information than in signaling expectations or mismatches of sensory information and expectations. Moreover, they indicate that the effects of expectations on pain are served by brain mechanisms which differ from those conveying effects of sensory information on pain.


Author(s):  
Nedjeljka Ivica ◽  
Luciano Censoni ◽  
Joel Sjöbom ◽  
Ulrike Richter ◽  
Per Petersson

It has been hypothesized that in order to perform sensorimotor transformations efficiently, somatosensory information being fed back to a particular motor circuit is organized in accordance with the mechanical loading patterns of the skin that results from the motor activity generated by that circuit. Rearrangements of sensory information to different motor circuits could in this respect constitute a key component of sensorimotor learning. We have here explored if the organization of tactile input from the plantar forepaw of the rat to cortical and striatal circuits is affected by a period of extensive sensorimotor training in a skilled reaching and grasping task. Our data show that the representation of tactile stimuli in terms of both temporal and spatial response patterns changes as a consequence of the training, and that spatial changes particularly involve the primary motor cortex. Based on the observed reorganization, we propose that reshaping of the spatiotemporal representation of the tactile afference to motor circuits is an integral component of the learning process that underlies skill-acquisition in reaching and grasping.


2021 ◽  
Vol 15 ◽  
Author(s):  
Raphael Rätz ◽  
François Conti ◽  
René M. Müri ◽  
Laura Marchal-Crespo

Neurorehabilitation research suggests that not only high training intensity, but also somatosensory information plays a fundamental role in the recovery of stroke patients. Yet, there is currently a lack of easy-to-use robotic solutions for sensorimotor hand rehabilitation. We addressed this shortcoming by developing a novel clinical-driven robotic hand rehabilitation device, which is capable of fine haptic rendering, and that supports physiological full flexion/extension of the fingers while offering an effortless setup. Our palmar design, based on a parallelogram coupled to a principal revolute joint, introduces the following novelties: (1) While allowing for an effortless installation of the user's hand, it offers large range of motion of the fingers (full extension to 180° flexion). (2) The kinematic design ensures that all fingers are supported through the full range of motion and that the little finger does not lose contact with the finger support in extension. (3) We took into consideration that a handle is usually comfortably grasped such that its longitudinal axis runs obliquely from the metacarpophalangeal joint of the index finger to the base of the hypothenar eminence. (4) The fingertip path was optimized to guarantee physiologically correct finger movements for a large variety of hand sizes. Moreover, the device possesses a high mechanical transparency, which was achieved using a backdrivable cable transmission. The transparency was further improved with the implementation of friction and gravity compensation. In a test with six healthy participants, the root mean square of the human-robot interaction force was found to remain as low as 1.37 N in a dynamic task. With its clinical-driven design and easy-to-use setup, our robotic device for hand sensorimotor rehabilitation has the potential for high clinical acceptance, applicability and effectiveness.


2021 ◽  
Author(s):  
Nicole Smeha ◽  
Ravneet Kalkat ◽  
Lauren E. Sergio ◽  
Loriann M. Hynes

Abstract Background: The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate somatosensory information into an appropriate motor response. Performance on such rule-based, “cognitive-motor integration” tasks is affected in concussion. Here, we investigate the relationship between visuomotor skill performance, concussion history, and sex during the course of a post-concussion management program. Methods: A total of 43 participants, divided into 3 groups based on their concussion history, completed a recovery program over the course of 4 weeks. Prior to, mid-way, and following the program, all participants were tested on their visuomotor skills. Results: We observed an overall change in visuomotor behaviour in all groups, as participants completed the tasks faster and more accurately. Specifically, we observed significant visuomotor skill improvement between the first and final sessions in participants with a concussion history compared to no-concussion-history controls. Notably, we observed a stronger recovery of these skills in females. Conclusions: Our findings indicate that (1) concussion impairs visuomotor skill performance, (2) the performance of complex, rule-based tasks can be improved over the course of a recovery program, and (3) stronger recovery in females suggests sex-related differences in the brain networks controlling skilled performance, and the effect of injury on these networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengye Zhu ◽  
Yi Yan ◽  
Xuezhong Cao ◽  
Fei Zeng ◽  
Gang Xu ◽  
...  

Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the “central gate” for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injection than neurons without RD. Based on their firing patterns and morphological characteristics, we propose that most of the SG neurons with RD mainly displayed tonic firing (69.05%) and corresponded to islet cell morphology (58.82%). Meanwhile, subthreshold currents, including the hyperpolarization-activated cation current (Ih) and T-type calcium current (IT), were identified in SG neurons with RD. Blockage of Ih delayed the onset of the first spike in RD, while abolishment of IT significantly blunted the amplitude of RD. Regarding synaptic inputs, SG neurons with RD showed lower frequencies in both spontaneous and miniature excitatory synaptic currents. Furthermore, RD-expressing neurons received either Aδ- or C-afferent-mediated monosynaptic and polysynaptic inputs. However, RD-lacking neurons received afferents from monosynaptic and polysynaptic Aδ fibers and predominantly polysynaptic C-fibers. These findings demonstrate that SG neurons with RD have a specific cell-type distribution, and may differentially process somatosensory information compared to those without RD.


Author(s):  
Michela Gamberini ◽  
Lauretta Passarelli ◽  
Matteo Filippini ◽  
Patrizia Fattori ◽  
Claudio Galletti

AbstractThe dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named “lateral grasping network”, is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named “reach-to-grasp network”, is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.


2021 ◽  
Author(s):  
Nikollas M. Benites ◽  
Beatriz Rodrigues ◽  
Carlos H. Silveira ◽  
Ricardo M. Leão

AbstractThe dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature fusiform neurons express two qualitative intrinsic states in equal proportions: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the pre-hearing phase (P4-P13), we found that fusiform neurons are mostly quiet, with the active state emerging after hearing onset at P14. Subthreshold properties present more variations before hearing onset, while action potential properties vary more after P14, developing bigger, shorter, and faster action potentials. Interestingly, the activity threshold is more depolarized in pre-hearing cells suggesting that persistent sodium current (INaP) increases its expression after hearing. In fact, INaP increases its expression after hearing, accordingly with the development of active neurons. Thus, we suggest that the post-hearing expression of INaP creates the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.


Author(s):  
Franco Giarrocco ◽  
Bruno Averbeck

The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.


2021 ◽  
Vol 6 (SI4) ◽  
pp. 165-169
Author(s):  
Muhammad Hanis Mohd Jefry ◽  
Hosni Hasan ◽  
Raja Mohammed Firhad Raja Azidin ◽  
Mohd Azim Nural Azhan

This study was conducted to determine running kinematics while using compression socks (CS) and smooth socks (SS) among 16 recreational runners. They were required to complete a maximal treadmill test with two different running sock conditions (smooth and compression). All kinematic parameters (ground contact time, heel strike, stride length and swing time) were reported in an average of the four stages of Bruce protocol. Results showed more significant correlations (p<0.05) among the kinematic variables in the compression socks condition as compared to the smooth socks. In conclusion, wearing compression socks improves movement kinematics while running may be due to the enriched somatosensory information received by the foot. Keywords: Running; Compression socks; Movement kinematics; Somatosensory feedback  eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6iSI4.2915  


Sign in / Sign up

Export Citation Format

Share Document