Excitation and inhibition of trigeminal motoneurons by palatal stimulation

1991 ◽  
Vol 87 (3) ◽  
Author(s):  
M. Takata ◽  
S. Tomioka ◽  
N. Nakajo
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4103
Author(s):  
Maite Aretxabaleta ◽  
Alexey Unkovskiy ◽  
Bernd Koos ◽  
Sebastian Spintzyk ◽  
Alexander B. Xepapadeas

Different approaches for digital workflows have already been presented for their use in palatal plates for newborns and infants. However, there is no evidence on the accuracy of CAD/CAM manufactured orthodontic appliances for this kind of application. This study evaluates trueness and precision provided by different CAM technologies and materials for these appliances. Samples of a standard palatal stimulation plate were manufactured using stereolithography (SLA), direct light processing (DLP) and subtractive manufacturing (SM). The effect of material (for SM) and layer thickness (for DLP) were also investigated. Specimens were digitized with a laboratory scanner (D2000, 3Shape) and analyzed with a 3D inspection software (Geomagic Control X, 3D systems). For quantitative analysis, differences between 3D datasets were measured using root mean square (RMS) error values for trueness and precision. For qualitative analysis, color maps were generated to detect locations of deviations within each sample. SM showed higher trueness and precision than AM technologies. Reducing layer thickness in DLP did not significantly increase accuracy, but prolonged manufacturing time. All materials and technologies met the clinically acceptable range and are appropriate for their use. DLP with 100 µm layer thickness showed the highest efficiency, obtaining high trueness and precision within the lowest manufacturing time.


1991 ◽  
Vol 567 (2) ◽  
pp. 346-349 ◽  
Author(s):  
Pablo Castillo ◽  
Cristina Pedroarena ◽  
Michael H. Chase ◽  
Francisco R. Morales

1993 ◽  
Vol 69 (2) ◽  
pp. 595-608 ◽  
Author(s):  
S. Nozaki ◽  
A. Iriki ◽  
Y. Nakamura

1. Single-unit activity was recorded from neurons in the bulbar parvocellular reticular formation (PCRF) dorsal and dorsolateral to the gigantocellular reticular nucleus near its caudal boundary, and the roles of these reticular neurons in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex (the cortical masticatory area, CMA) were studied in the paralyzed guinea pig anesthetized with urethan or with ketamine and chlorpromazine. 2. One hundred nine PCRF neurons were activated antidromically by microstimulation in either the masseter (MA) or anterior digastric (AD) motoneuron pool in the ipsilateral trigeminal motor nucleus, and orthodromically by stimulation in the contralateral CMA. Repetitive CMA stimulation induced rhythmical burst activity in these PCRF neurons in association with the rhythmical field potential in the contralateral AD motoneuron pool induced by the same CMA stimulation. The burst was synchronous with the rhythmical AD field potential in 81 neurons, 44 and 37 of which responded antidromically to stimulation in the MA and AD motoneuron pools, respectively. The remaining 28 neurons antidromically responded to stimulation in the MA motoneuron pool, and their burst corresponded in time with the period between successive AD field potentials. 3. Spike-triggered averaging of the intracellular potentials of MA and AD motoneurons (MNs) by simultaneously recorded spontaneous spikes of the PCRF neurons, which showed rhythmical burst responses during the jaw-opening phase to repetitive CMA stimulation, revealed a monosynaptic inhibitory postsynaptic potential in MA.MNs in 12 of 34 tested pairs and a monosynaptic excitatory postsynaptic potential (EPSP) in AD.MNs in 14 of 26 tested pairs. An EPSP was also found in MA.MNs after a monosynaptic latency from triggering spikes in 11 of 37 tested PCRF neurons that showed burst activity during the jaw-closing phase. 4. We conclude that both excitatory and inhibitory premotor neurons projecting to MA.MNs as well as excitatory premotor neurons projecting to AD.MNs are located in the PCRF, and that these premotor neurons relay the output of the central rhythm generator for rhythmical jaw movements in the medial bulbar reticular formation to trigeminal motoneurons, and thus participate in induction of rhythmical activities of trigeminal motoneurons by repetitive CMA stimulation.


1974 ◽  
Vol 5 (4) ◽  
pp. 342-344
Author(s):  
E. V. Gura ◽  
Yu. P. Limanskii ◽  
A. I. Pilyavskii

Sign in / Sign up

Export Citation Format

Share Document