reciprocal inhibition
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 60)

H-INDEX

56
(FIVE YEARS 3)

2021 ◽  
Author(s):  
D.A. Gladchenko ◽  
S.M. Bogdanov ◽  
L.V. Roshchina ◽  
A.A. Chelnokov

The article presents the results of a study of the reflex mechanisms of reciprocal and presynaptic inhibition at rest and when performing an isometric reduction of 5% of MPS against the background of twenty-minute non-invasive electrical stimulation of the spinal cord. It was found that at rest against the background of electrical stimulation, reciprocal and presynaptic inhibition was inverted to their relief, and when performing plantar flexion of the foot, on the contrary, reciprocal and presynaptic inhibition increased, but the severity of presynaptic inhibition was greater. Key words: percutaneous electrical stimulation of the spinal cord, reciprocal inhibition, presynaptic inhibition, isometric contraction.


2021 ◽  
Vol 102 (10) ◽  
pp. e31
Author(s):  
Gretchen Seif ◽  
Alan Phipps ◽  
Anna Zuloaga ◽  
Rachel McLaughlin ◽  
Blair Dellenbach ◽  
...  

2021 ◽  
Author(s):  
Ekaterina O Morozova ◽  
Peter Newstein ◽  
Eve Marder

What features are important for circuit robustness? Reciprocal inhibition is a building block in many circuits. We used dynamic clamp to create reciprocally inhibitory circuits from GM neurons of the crab stomatogastric ganglion by injecting artificial synaptic and hyperpolarization-activated inward (H) currents. In "release", the active neuron controls the off/on transitions. In "escape", the inhibited neuron controls the transitions. We characterized the robustness of escape and release circuits to alterations in circuit parameters, temperature, and neuromodulation. Escape circuits rely on tight correlations between synaptic and H conductances to generate bursting but are resilient to temperature increase. Release circuits are robust to variations in synaptic and H conductances but fragile to temperature increase. The modulatory current (IMI) restores oscillations in release circuits but has little effect in escape. Thus, the same perturbation can have dramatically different effects depending on the circuits' mechanism of operation that may not be observable from circuit output.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1108
Author(s):  
Xupeng Chen ◽  
Zhuowen Sun ◽  
Jianyong Pang

In order to study and verify if the three corrosive irons of SO42−, Mg2+, and Cl− could promote or inhibit each other in concrete corrosion as time goes by, we take Metakaolin (MK) as the research object to explore the interaction mechanism among ions by testing the physical and mechanical properties, the ion content, the phase composition, and the microstructural changes of the MK concrete under the action of various ion combinations. The results show that during the initial and middle stages of the corrosion (40–80 days), SO42− and Mg2+ are in reciprocal inhibition relation, Cl− could inhibit the action of SO42−, and Mg2+ could promote the diffusion of Cl−. However, at the final stage of corrosion (120 days), SO42− and Mg2+ could mutually promote each other, and both irons could promote the diffusion of Cl−. Mg2+ could mainly produce magnesium hydroxide and M-S-H inside the concrete, SO42− mainly generates the ettringite and gypsum, while Cl− mainly produces Friedel salt and NaCl crystal.


Author(s):  
Tsuyoshi Ichinose ◽  
Hitoshi Shitara ◽  
Tsuyoshi Tajika ◽  
Takuro Kuboi ◽  
Daisuke Shimoyama ◽  
...  

2021 ◽  
Author(s):  
Joseph D. Zak ◽  
Nathan E. Schoppa

The local circuitry within olfactory bulb glomeruli filters, transforms, and facilitates information transfer from olfactory sensory neurons to bulb output neurons. Two key elements of this circuit are glutamatergic tufted cells (TCs) and GABAergic periglomerular (PG) cells, both of which actively shape mitral cell activity and bulb output. A subtype of TCs, the external tufted cells (eTCs), can synaptically excite PG cells, but there are unresolved questions about other aspects of the glomerular connections, including the extent of connectivity between eTCs and the precise nature of reciprocal interactions between eTCs and PG cells. We combined patch-clamp recordings in OB slices and optophysiological tools to investigate local functional connections within glomeruli. When TCs were optically suppressed, we found a large decrease in excitatory post-synaptic currents (EPSCs) in "uniglomerular" PG cells that extend dendrites to one glomerulus, indicating that TC activation was required for most excitation of these PG cells. However, TC suppression had no effect on EPSCs in eTCs, arguing that TCs make few, if any, direct excitatory synaptic connections onto eTCs. The absence of synaptic connections between eTCs was also supported by recordings in eTC pairs. Lastly, we show using similar optical suppression methods that PG cells that express GAD65, mainly uniglomerular PG cells, provide strong inhibition onto eTCs. Our results indicate that the local network of TCs form potent reciprocal synaptic connections with GAD65-expressing uniglomerular PG cells but not other TCs. This configuration favors local inhibition over recurrent excitation within a glomerulus, limiting information transfer to downstream cortical regions.


2021 ◽  
Vol 9 (5) ◽  
pp. 1073
Author(s):  
Juris Jansons ◽  
Dace Skrastina ◽  
Alisa Kurlanda ◽  
Stefan Petkov ◽  
Darya Avdoshina ◽  
...  

Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.


Author(s):  
Juris Jansons ◽  
Dace Skrastina ◽  
Alisa Kurlanda ◽  
Stefan Petkov ◽  
Darya Avdoshina ◽  
...  

Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. Possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Also, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescent signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vedrana Andric ◽  
Alicia Nevers ◽  
Ditipriya Hazra ◽  
Sylvie Auxilien ◽  
Alexandra Menant ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document