transient outward current
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 8)

H-INDEX

58
(FIVE YEARS 0)

Hypertension ◽  
2021 ◽  
Vol 77 (4) ◽  
pp. 1412-1427
Author(s):  
Xiang-Qun Hu ◽  
Chiranjib Dasgupta ◽  
Rui Song ◽  
Monica Romero ◽  
Sean M. Wilson ◽  
...  

Hypoxia during pregnancy is a major contributor to the pathogenesis of preeclampsia and intrauterine growth restriction. Our recent studies revealed that pregnancy-induced uterine vascular adaptation depended on the enhanced Ca 2+ spark/spontaneous transient outward current (STOC) coupling and hypoxia during gestation diminished this adaption. In the present study, we test the hypothesis of a mechanistic link of microRNA-210 (miR-210) in hypoxia-impaired Ca 2+ spark/STOC coupling in uterine arteries. Pregnant ewes acclimatized to high-altitude (3801 m) hypoxia for ≈110 days significantly increased circulation levels of miR-210 in both the ewe and her fetus. Treatment of uterine arteries from high-altitude animals with the antagomir miR-210-LNA recovered hypoxia-repressed STOCs in pregnant ewes and restored the hormonal regulation of STOCs in nonpregnant animals. In uterine arteries from low-altitude control animals, miR-210 mimic suppressed STOCs in pregnant ewes and inhibited the hormonal regulation of STOCs in nonpregnant animals. Mechanistically, miR-210 directly targeted and downregulated type 2 ryanodine receptor and large-conductance Ca 2+ -activated K + channel β1 subunit, resulting in significant decreases in Ca 2+ sparks and STOCs in uterine arteries. In addition, miR-210 indirectly decreased STOCs by targeting ten-eleven translocation methylcytosine dioxygenase. Together, the present study revealed a mechanistic link of miR-210 in hypoxia-induced repression of Ca 2+ spark/STOC coupling in uterine arteries during gestation, providing novel insights into the understanding of pregnancy complications associated with hypoxia and the potential therapeutic targets.


2021 ◽  
Vol 22 (3) ◽  
pp. 1419
Author(s):  
Pilar Cercós ◽  
Diego A. Peraza ◽  
Angela de Benito-Bueno ◽  
Paula G. Socuéllamos ◽  
Abdoul Aziz-Nignan ◽  
...  

Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer’s disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242747
Author(s):  
José M. Di Diego ◽  
Bence Patocskai ◽  
Hector Barajas-Martinez ◽  
Virág Borbáth ◽  
Michael J. Ackerman ◽  
...  

Background J wave syndromes (JWS), including Brugada (BrS) and early repolarization syndromes (ERS), are associated with increased risk for life-threatening ventricular arrhythmias. Pharmacologic approaches to therapy are currently very limited. Here, we evaluate the effects of the natural flavone acacetin. Methods The effects of acacetin on action potential (AP) morphology and transient outward current (Ito) were first studied in isolated canine RV epicardial myocytes using whole-cell patch clamp techniques. Acacetin’s effects on transmembrane APs, unipolar electrograms and transmural ECGs were then studied in isolated coronary-perfused canine RV and LV wedge preparations as well as in whole-heart, Langendorff-perfused preparations from which we recorded a 12 lead ECG and unipolar electrograms. Using floating glass microelectrodes we also recorded transmembrane APs from the RVOT of the whole-heart model. The Ito agonist NS5806, sodium channel blocker ajmaline, calcium channel blocker verapamil or hypothermia (32°C) were used to pharmacologically mimic the genetic defects and conditions associated with JWS, thus eliciting prominent J waves and provoking VT/VF. Results Acacetin (5–10 μM) reduced Ito density, AP notch and J wave area and totally suppressed the electrocardiographic and arrhythmic manifestation of both BrS and ERS, regardless of the experimental model used. In wedge and whole-heart models of JWS, increasing Ito with NS5806, decreasing INa or ICa (with ajmaline or verapamil) or hypothermia all resulted in accentuation of epicardial AP notch and ECG J waves, resulting in characteristic BrS and ERS phenotypes. Phase 2-reentrant extrasystoles originating from the RVOT triggered VT/VF. The J waves in leads V1 and V2 were never associated with a delay of RVOT activation and always coincided with the appearance of the AP notch recorded from RVOT epicardium. All repolarization defects giving rise to VT/VF in the BrS and ERS models were reversed by acacetin, resulting in total suppression of VT/VF. Conclusions We present experimental models of BrS and ERS capable of recapitulating all of the ECG and arrhythmic manifestations of the JWS. Our findings provide definitive support for the repolarization but not the depolarization hypothesis proposed to underlie BrS and point to acacetin as a promising new pharmacologic treatment for JWS.


2020 ◽  
Vol 21 (14) ◽  
pp. 5057
Author(s):  
Jérôme Clatot ◽  
Nathalie Neyroud ◽  
Robert Cox ◽  
Charlotte Souil ◽  
Jing Huang ◽  
...  

Background: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other’s function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. Results: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navβ1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. Conclusion: Nav and Kv4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Tinaquero ◽  
◽  
Teresa Crespo-García ◽  
Raquel G. Utrilla ◽  
Paloma Nieto-Marín ◽  
...  

2020 ◽  
Vol 22 ◽  
pp. 01024
Author(s):  
Arsenii Dokuchaev ◽  
Svyatoslav Khamzin ◽  
Olga Solovyova

Ageing is one of the dominant risk factors for cardiovascular diseases. A large number of experimental data is collected on the cellular remodeling in the ageing myocardium from mammals, but very little is known about the human cardiomyocytes. We used a combined electro-mechanical model of human ventricular cardiomyocytes and a population of models approach to investigate the variability in the response of cardiomyocytes to age-related changes in model parameters of the ionic currents. To generate a control model population, we varied 9 ionic parameters and excluded model samples with biomarkers of cellular action potential (AP) and Ca2+ transient (CT) falling outside the physiological ranges. Using the control population of models, we evaluated the response to age-related reduction in the K+ transient outward current, SERCA pump, and an increase in the Na+Ca2+ exchange current and L-type Ca2+ current. Then, we randomly generated 60 age-related sets of the 4 parameters and applied each set to every model in the control population. We showed an increase in the frequency of repolarization anomalies (RA) and critical AP prolongation in the ageing model populations suggesting arrhythmogenic effects of the ionic remodeling. The population based approach allowed us to assess the pro-arrhythmic contribution of the ionic parameters in ageing cardiomyocytes.


2019 ◽  
Author(s):  
Arsenii Dokuchaev ◽  
Svyatoslav Khamzin ◽  
Olga Solovyova

AbstractAgeing is the dominant risk factor for cardiovascular diseases. A great body of experimental data has been gathered on cellular remodelling in the Ageing myocardium from animals. Very few experimental data are available on age-related changes in the human cardiomyocyte. We have used our combined electromechanical model of the human cardiomyocyte and the population modelling approach to investigate the variability in the response of cardiomyocytes to age-related changes in the model parameters. To generate the model population, we varied nine model parameters and excluded model samples with biomarkers falling outside of the physiological ranges. We evaluated the response to age-related changes in four electrophysiological model parameters reported in the literature: reduction in the density of the K+ transient outward current, maximal velocity of SERCA, and an increase in the density of NaCa exchange current and CaL-type current. The sensitivity of the action potential biomarkers to individual parameter variations was assessed. Each parameter modulation caused an increase in APD, while the sensitivity of the model to changes in GCaL and Vmax_up was much higher than to those in the effects of Gto and KNaCa. Then 60 age-related sets of the four parameters were randomly generated and each set was applied to every model in the control population. We calculated the frequency of model samples with repolarisation anomalies (RA) and the shortening of the electro-mechanical window in the ageing model populations as an arrhythmogenic ageing score. The linear dependence of the score on the deviation of the parameters showed a high determination coefficient with the most significant impact due to the age-related change in the CaL current. The population-based approach allowed us to classify models with low and high risk of age-related RA and to predict risks based on the control biomarkers.


Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 619
Author(s):  
Buh-Yuan Tai ◽  
Zhi-Hong Wen ◽  
Pao-Yun Cheng ◽  
Hsiang-Yu Yang ◽  
Chang-Yih Duh ◽  
...  

Sepsis, an inflammatory response to infection provoked by lipopolysaccharide (LPS), is associated with high mortality, as well as ischemic stroke and new-onset atrial arrhythmia. Severe bacterial infections causing sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction and finally death. LPS challenge-induced inflammatory responses during sepsis may increase the likelihood of the arrhythmogenesis. Lemnalol is known to possess potent anti-inflammatory effects. This study examined whether Lemnalol (0.1 μM) could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes under the influence of LPS (1μg/mL). Under challenge with LPS, Lemnalol-treated LA myocytes, had a longer AP duration at 20%, 50% and 90% repolarization of the amplitude, compared to the LPS-treated cells. LPS-challenged LA myocytes showed increased late sodium current, Na+-Ca2+ exchanger current, transient outward current, rapid component of delayed rectifier potassium current, tumor necrosis factor-α, NF-κB and increased phosphorylation of ryanodine receptor (RyR), but a lower L-type Ca2+ current than the control LA myocytes. Exposure to Lemnalol reversed the LPS-induced effects. The LPS-treated and control groups of LA myocytes, with or without the existence of Lemnalol. showed no apparent alterations in the sodium current amplitude or Cav1.2 expression. The expression of sarcoendoplasmic reticulum calcium transport ATPase (SERCA2) was reduced by LPS treatment, while Lemnalol ameliorated the LPS-induced alterations. The phosphorylation of RyR was enhanced by LPS treatment, while Lemnalol attenuated the LPS-induced alterations. In conclusion, Lemnalol modulates LPS-induced alterations of LA calcium homeostasis and blocks the NF-κB pathways, which may contribute to the attenuation of LPS-induced arrhythmogenesis.


2017 ◽  
Vol 313 (4) ◽  
pp. R438-R449 ◽  
Author(s):  
D. A. Carter ◽  
Y.-T. Choong ◽  
A. A. Connelly ◽  
J. K. Bassi ◽  
N. O. Hunter ◽  
...  

Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT1AR) most widely expressed in adult neurons. Activation of the AT1R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT1R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT1AR-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT1AR promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT1AR-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT1AR-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT1AR-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT1AR-GFP neurons and TH-GFP neurons showed similar AT1AR-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT1AR-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing.


Sign in / Sign up

Export Citation Format

Share Document