Effects of eye position on auditory localization and neural representation of space in superior colliculus of cats

1995 ◽  
Vol 104 (3) ◽  
Author(s):  
P.H. Hartline ◽  
R.L. Pandey Vimal ◽  
A.J. King ◽  
D.D. Kurylo ◽  
D.P.M. Northmore
1993 ◽  
Vol 5 (6) ◽  
pp. 869-884 ◽  
Author(s):  
David S. Touretzky ◽  
A. David Redish ◽  
Hank S. Wan

O'Keefe (1991) has proposed that spatial information in rats might be represented as phasors: phase and amplitude of a sine wave encoding angle and distance to a landmark. We describe computer simulations showing that operations on phasors can be efficiently realized by arrays of spiking neurons that recode the temporal dimension of the sine wave spatially. Some cells in motor and parietal cortex exhibit response properties compatible with this proposal.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 43 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Robert I. Bermant ◽  
Robert B. Welch

Subjects were exposed to a visual and to an auditory stimulus that differed spatially in laterality of origin. The subjects were observed for visual biasing of auditory localization (the momentary influence of a light on the spatially perceived location of a simultaneously presented sound) and for auditory aftereffect (a change in perceived location of a sound that persists over time and is measured after termination of the visual stimulus). A significant effect of visual stimulation on auditory localization was found only with the measure of bias. Bias was tested as a function of degree of visual-auditory separation (10/20/30°), eye position (straight-ahead/visual stimulus fixation), and position of visual stimulus relative to auditory stimulus (left/right). Only eye position proved statistically significant; straight-ahead eye position induced more bias than did fixation of the visual stimulus.


1986 ◽  
Vol 55 (1) ◽  
pp. 97-112 ◽  
Author(s):  
J. T. McIlwain

Electrical stimulation was carried out in the intermediate and deep gray layers of the superior colliculus in alert cats. The heads of the animals were fixed, and their eye movements were recorded with the scleral search coil method. Stimulation in the anterior two-thirds of the colliculus with long-duration pulse trains produced multiple saccades, as in the primate (45, 51), but their directions and amplitudes were influenced significantly by the initial position of the eye. Stimulation in the posterior part of the colliculus evoked saccades that appeared to be "goal-directed," whereas stimulation at the extreme caudal edge of the colliculus yielded centering saccades. These observations confirm previous reports of Roucoux and Crommelinck (48) and Guitton et al. (24). Saccades evoked during bilateral simultaneous stimulation of the superior colliculi were also dependent on the initial position of the eye. At certain relative intensities of stimulation on the two sides, saccades failed to occur when the eye was within a particular part of the oculomotor range. When the eye was outside this region, the same stimuli triggered an eye movement that drove the eye toward the zone of saccade failure. These findings indicate that saccadic commands resulting from focal collicular stimulation in the cat can be modified by information about current eye position. It is not certain where in the brain this occurs or by what neural mechanisms, but a local feedback model of the saccadic control system (46) can account for the main observations. The functional significance of these findings depends in large measure on the degree to which focal collicular stimulation reproduces naturally occurring patterns of neural activity.


Nature ◽  
1984 ◽  
Vol 309 (5966) ◽  
pp. 345-347 ◽  
Author(s):  
Martha F. Jay ◽  
David L. Sparks

2006 ◽  
Vol 95 (1) ◽  
pp. 505-526 ◽  
Author(s):  
Michael Campos ◽  
Anil Cherian ◽  
Mark A. Segraves

1995 ◽  
Vol 74 (1) ◽  
pp. 273-287 ◽  
Author(s):  
T. Kitama ◽  
Y. Ohki ◽  
H. Shimazu ◽  
M. Tanaka ◽  
K. Yoshida

1. Extracellular spikes of burster-driving neurons (BDNs) were recorded within and immediately below the prepositus hypoglossi nucleus in the alert cat. BDNs were characterized by short-latency activation after stimulation of the contralateral vestibular nerve (latency: 1.4-2.7 ms) and the ipsilateral superior colliculus (latency: 1.7-3.5 ms). Convergence of vestibular and collicular inputs was found in all of 85 BDNs tested. Firing of BDNs increased during contralateral horizontal head rotation and decreased during ipsilateral rotation. A burst of spikes was induced in association with contralateral saccades and quick phases of nystagmus. 2. BDNs showed irregular tonic discharges during fixation. There was no significant correlation between the firing rate during fixation and horizontal or vertical eye position in most BDNs. During horizontal sinusoidal head rotation, the change in firing rate was approximately proportional to and in phase with contralateral head velocity. The phase lag of the response relative to head angular velocity was 13.8 +/- 20.1 degrees (mean +/- SD) at 0.5 Hz and 7.2 +/- 13.5 degrees at 0.2 Hz on the average. The gain was 0.88 +/- 0.25 (spikes/s)/(degrees/s) at 0.5 Hz and 1.19 +/- 0.49 (spikes/s)/(degrees/s) at 0.2 Hz. 3. Quantitative analysis of burst activity associated with saccades or quick phases indicated that the ON direction of BDNs was contralateral horizontal. The number of spikes in the burst was linearly related to the amplitude of the contralateral component of rapid eye movements. The slope of regression line was, on the average, 1.14 +/- 0.48 spikes/deg. There was no significant difference between the mean slopes for saccades and quick phases. The number of spikes depended on the difference between initial and final horizontal eye positions and not on the absolute eye position in the orbit. The mean burst firing rate was proportional to the mean velocity of the contralateral component of rapid eye movements. The slope of the regression line was 0.82 +/- 0.34 (spikes/s)/(degrees/s). Significant correlation was also found between intraburst instantaneous firing rate and instantaneous component eye velocity. 4. Objects presented in the contralateral visual field elicited a brief burst of spikes in BDNs independent of any eye movement. Contralateral saccades to the target were preceded by an early response to the visual stimulus and subsequent response associated with eye movement. 5. Excitation of BDNs produced by stimulation of the ipsilateral superior colliculus was facilitated by contralateral horizontal head rotation. Therefore saccadic signals from the superior colliculus to BDNs may be augmented by vestibular signals during head rotation.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document