Methylation of ribosomal proteins during ribosome assembly in Escherichia coli

1981 ◽  
Vol 183 (3) ◽  
pp. 418-421 ◽  
Author(s):  
F. N. Chang
2006 ◽  
Vol 188 (19) ◽  
pp. 6757-6770 ◽  
Author(s):  
Mengxi Jiang ◽  
Kaustuv Datta ◽  
Angela Walker ◽  
John Strahler ◽  
Pia Bagamasbad ◽  
...  

ABSTRACT The bacterial ribosome is an extremely complicated macromolecular complex the in vivo biogenesis of which is poorly understood. Although several bona fide assembly factors have been identified, their precise functions and temporal relationships are not clearly defined. Here we describe the involvement of an Escherichia coli GTPase, CgtAE, in late steps of large ribosomal subunit biogenesis. CgtAE belongs to the Obg/CgtA GTPase subfamily, whose highly conserved members are predominantly involved in ribosome function. Mutations in CgtAE cause both polysome and rRNA processing defects; small- and large-subunit precursor rRNAs accumulate in a cgtAE mutant. In this study we apply a new semiquantitative proteomic approach to show that CgtAE is required for optimal incorporation of certain late-assembly ribosomal proteins into the large ribosomal subunit. Moreover, we demonstrate the interaction with the 50S ribosomal subunits of specific nonribosomal proteins (including heretofore uncharacterized proteins) and define possible temporal relationships between these proteins and CgtAE. We also show that purified CgtAE associates with purified ribosomal particles in the GTP-bound form. Finally, CgtAE cofractionates with the mature 50S but not with intermediate particles accumulated in other large ribosome assembly mutants.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Acta Naturae ◽  
2011 ◽  
Vol 3 (2) ◽  
pp. 22-33 ◽  
Author(s):  
M V Nesterchuk ◽  
P V Sergiev ◽  
O A Dontsova

2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


Microbiology ◽  
1982 ◽  
Vol 128 (5) ◽  
pp. 997-1001
Author(s):  
P. D. Butler ◽  
P. F. G. Sims ◽  
D. G. Wild

Sign in / Sign up

Export Citation Format

Share Document