U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills, East Antarctica

1993 ◽  
Vol 115 (2) ◽  
pp. 184-203 ◽  
Author(s):  
Ruth Lanyon ◽  
Lance P. Black ◽  
Hans-Michael Seitz
2008 ◽  
Vol 21 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Tao Huang ◽  
Liguang Sun ◽  
Yuhong Wang ◽  
Renbin Zhu

AbstractDuring CHINARE-22 (December 2005–March 2006), we investigated six penguin colonies in the Vestfold Hills, East Antarctica, and collected several penguin ornithogenic sediment cores, samples of fresh guano and modern penguin bone and feather. We selected seven penguin bones and feathers and six sediments from the longest sediment core and performed AMS14C dating. The results indicate that penguins occupied the Vestfold Hills as early as 8500 calibrated years before present (cal. yrbp), following local deglaciation and the formation of the ice free area. This is the first report on the Holocene history of penguins in the Vestfold Hills. As in other areas of Antarctica, penguins occupied this area as soon as local ice retreated and the ice free area formed, and they are very sensitive to climatic and environmental changes. This work provides the foundation for understanding the history of penguins occupation in Vestfold Hills, East Antarctica.


2007 ◽  
Vol 19 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Frank Lisker ◽  
Christopher J.L. Wilson ◽  
Helen J. Gibson

Analysis of five basement samples from the Vestfold Hills (East Antarctica) reveals pooled apatite fission track (FT) ages ranging from 188 to 264 Ma and mean lengths of 13.7 to 14.9 μm. Quantitative thermal histories derived from these data give consistent results indicating onset of cooling/denudation began sometime prior to 240 Ma, with final cooling below 105°–125°C occurring between 240 and 220 Ma (Triassic). A Cretaceous denudation phase can be inferred from the sedimentary record of the Prydz Bay offshore the Vestfold Hills. The two denudational episodes are likely associated with Palaeozoic large-scale rifting processes that led to the formation of the adjacent Lambert Graben, and to the Cretaceous Gondwana break-up between Antarctica and India. Subsequent evolution of the East Antarctic passive continental margin likely occurred throughout the Cenozoic based on the depositional record in Prydz Bay and constraints (though tentative) from FT data.


1993 ◽  
Vol 18 ◽  
pp. 81-95 ◽  
Author(s):  
Heikki Hirvas ◽  
Keijo Nenonen ◽  
Patrick Quilty

2021 ◽  
pp. SP518-2021-33
Author(s):  
Manoj K. Pandit ◽  
Anthony Pivarunas ◽  
Joseph G. Meert

AbstractThe Archean age granite gneiss basement along the Prydz Bay coastline in East Antarctica hosts N-S, E-W, NE-SW, and NW-SE trending mafic dyke swarms in the Vestfold Hills region that intruded between 2420 and 1250 Ma. The dyke trends do not show a direct correlation with the dyke geochemistry but can be broadly discriminated into high-Mg and Fe-rich tholeiites. The former type being more siliceous, LILE, HFSE, and LREE enriched, crystallized from a fractionated melt with a notable crustal component or fluid enrichment through the previous subduction process. The Fe-rich tholeiites are less siliceous, have lower abundances of LILE and REE, and were derived from an undifferentiated, primitive melt. The geochemical characteristics of both types underline a shallow level and a high degree of melting in the majority of cases, and a broadly Island Arc Basalt (IAB) affinity. Paleomagnetic analysis of hand samples shows directional groups consistent with geochemical groupings. The Vestfold Hills dykes show a possible linkage with the coeval mafic dykes in Eastern Dharwar and Bastar cratons of the South Indian Block, based on the similarity in the Paleoproterozoic paleolatitudes.


2019 ◽  
Vol 329 ◽  
pp. 273-293 ◽  
Author(s):  
Evgenii V. Mikhalsky ◽  
Nikolay L. Alexeev ◽  
Igor A. Kamenev ◽  
Mikhail S. Egorov ◽  
Evgenii L. Kunakkuzin

1994 ◽  
Vol 6 (3) ◽  
pp. 379-394 ◽  
Author(s):  
John P. Sims ◽  
Paul H. G. M. Dirks ◽  
Chris J. Carson ◽  
Chris J. L. Wilson

Archaean gneisses in the Rauer Group of islands, East Antarctica, record a prolonged history of high-grade deformational episodes, many of which predate that identified in mid-Proterozoic gneisses. Eleven generations of mafic dykes, belonging to discrete chemical suites, have been used as relative time markers to constrain this deformational history. Based on the timing of intrusion with respect to structures, dykes in the Rauer Group have been correlated with largely undeformed and dated dyke suites in the adjacent Vestfold Hills. This has allowed absolute ages to be inferred for the early- to mid-Proterozoic mafic dyke suites in the Rauer Group, and a correlation of the interspersed structural events. Most structures in the Rauer Group, however, developed in response to high-grade progressive deformation at approximately 1000 Ma. During this deformational episode, strains were repeatedly partitioned into sub-vertical, noncoaxial, high-strain zones recording NW-directed sinistral transpression, that separated zones of lower strain dominated by coaxial folding with axes parallel to the shear direction. Three additional mafic dyke suites intruded during this deformation which was followed by three stages of brittle-ductile deformation and a final suite of lamprophyre dykes. Due to the numerous intrusive time markers, the Rauer Group serves as an excellent illustration of how complicated gneiss terrains may be.


2000 ◽  
Vol 30 (3) ◽  
pp. 474-476 ◽  
Author(s):  
LUIZ JOSÉ TOMAZELLI ◽  
SÉRGIO REBELLO DILLENBURG ◽  
JORGE ALBERTO VILLWOCK

2018 ◽  
Vol 938 (8) ◽  
pp. 38-43
Author(s):  
S.A. Kotler ◽  
I.D. Zolnikov ◽  
D.V. Pchelnikov

The types of geological and geomorphological structure of the Katun valley are distinguished in the work. For this, a method of geoinformation mapping using morphometric indicators of the valley’s width and meandering of the channel was developed. The morphometric parameter of the valley’s width was calculated as the total area of terraces. As the morphometric parameters of the channel’s meandering, the angles of the river segments’ deviation relative to each other were calculated. Conjugated analysis of these morphometric indicators enabled identifying 18 morphotypes. These morphotypes according to the geological and geomorphological structure of the valley were combined into 4 classes. Separation of the Katun valley in certain classes and morphotypes is due to the different geological history of these sites during the Quaternary period. The most important reasons predetermining the modern variety of geological and geomorphological types of the valley are neotectonic movements and exogenous phenomena (glaciers, dam lakes, landslides, etc.) naturally localized in the space from the upstream of the river to its exit into the foothills. The developed method can be applied for quantitative morphometric classification of the mountain rivers’ valleys in other regions.


2016 ◽  
Author(s):  
Celine Martin ◽  
◽  
George E. Harlow ◽  
George E. Harlow ◽  
George E. Harlow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document