Mathematical analysis of the changes in the parameters of the action potentials, membrane and ionic currents of frog muscle fibre during the recovery cycle

1987 ◽  
Vol 57 (3) ◽  
pp. 207-211 ◽  
Author(s):  
D. I. Stephanova
1966 ◽  
Vol 183 (1) ◽  
pp. 152-166 ◽  
Author(s):  
B. Frankenhaeuser ◽  
B. D. Lindley ◽  
R. S. Smith

1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2015 ◽  
Vol 39 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Javier Rodriguez-Falces

A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity.


In the frog muscle, ext. long. dig. IV, there are two or three spindle systems. Each consists of a bundle of intrafusal muscle fibres with two, three or four discrete encapsulated sensory regions distributed in mechanical series along it. A sensory region is usually comprised of the coiled branches of one afferent axon. These embrace the intrafusal fibres and ultimately form long fine varicose endings on or near them. The intrafusal striations appear to be lost for a short distance within the sensory region, and in this region the intrafusal fibre nuclei crowd together. The ‘small’ extrafusal efferents break up into trusses of fine unmyelinated axons and terminate as ‘grape’ end-plates, several of which can occur on the same muscle fibre. This is the ‘tonic’ system. The ‘large’ extrafusal efferents terminate as ‘Endbiischel’ end-plates on muscle fibres not supplied by grape endings. This is the ‘twitch’ system. Both ‘grape' and ‘twitch’ end-plates occur on the intrafusal bundle (probably on separate fibres) between the sensory regions. They are supplied by branches of ‘small’ or ‘large’ axons respectively, which also innervate extrafusal fibres. Thus like the extrafusals the intrafusal bundle is composed of ‘tonic’ and ‘twitch’ muscle fibres. This situation contrasts with that of the mammal, where extrafusals are exclusively ‘twitch’ fibres and intrafusals ‘tonic’.


2018 ◽  
Vol 225 (4) ◽  
pp. e13151 ◽  
Author(s):  
M. A. Trevino ◽  
A. J. Sterczala ◽  
J. D. Miller ◽  
M. E. Wray ◽  
H. L. Dimmick ◽  
...  

1990 ◽  
Vol 63 (5) ◽  
pp. 1075-1088 ◽  
Author(s):  
R. H. Kramer ◽  
I. B. Levitan

1. The effect of electrical activity on the response to the neuromodulators serotonin (5-HT) and the neuropeptide egg-laying hormone (ELH) was studied in the Aplysia bursting pacemaker neuron R15. 2. Previous work has shown that 5-HT and ELH augment R15s bursting activity by enhancing two ionic currents, an inwardly rectifying K+ current (IR) and a voltage-gated Ca2+ current (ICa), and that the enhancement of the currents is mediated by the intracellular second-messenger adenosine 3',5'-cyclic monophosphate (cAMP). Here we show that both spontaneous action potentials and voltage-clamp depolarizations suppress the modulation by 5-HT and ELH of these currents. Both spontaneous and evoked depolarizations decrease the magnitude and dramatically speed the decay of the modulation of IR and ICa. 3. The depolarization-induced suppression is blocked by intracellular ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N',-tetraacetic acid (EGTA), indicating that the suppression is Ca-dependent. The suppression is specific for responses mediated by cAMP; a non-cyclic AMP-mediated response to acetylcholine is not affected by depolarizing pulses. 4. The Ca-dependent suppression of IR modulation differs from the Ca-dependent suppression of ICa modulation. Ca2+ influx decreases the sensitivity of IR to neuromodulators without reducing the maximal response elicited by high concentrations of neuromodulators. In contrast, Ca2+ not only decreases the sensitivity of ICa but also reduces the maximal effect elicited by high concentrations of neuromodulators. We have shown previously that intracellular Ca2+ also inactivates the basal IR and ICa in neuron R15 by distinct mechanisms. The inactivation of IR is due to an antagonistic action of Ca2+ on cAMP metabolism, whereas the inactivation of the basal ICa is due primarily to a more direct action of Ca2+, perhaps on the Ca channels themselves. 5. We also studied the interaction between action potentials and neuromodulator released onto R15 from an endogenous source: bag cell neurons, which release large amounts of ELH during an intense "afterdischarge." IR and ICa become greatly enhanced during the afterdischarge, even though R15 continually fires action potentials. In addition, Ca-dependent inactivation of IR is suppressed during the afterdischarge. We suggest that the bag cells release an amount of ELH sufficient to temporarily saturate the cAMP-mediated enhancement of IR and that this temporarily prevents the suppressive effects of Ca2+ on IR. 6. The activity-dependent suppression of neuromodulation in neuron R15 is an example of neuronal plasticity that results from interactions between intracellular messengers.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 55 (1) ◽  
pp. 13-22 ◽  
Author(s):  
H. Querfurth

The present experiments investigated the signal transfer in the isolated frog muscle spindle by using pseudorandom noise (PRN) as the analytical probe. In order to guarantee that the random stimulus covered the entire dynamic range of the receptor, PRN stimuli of different intensities were applied around a constant mean length, or PRN stimuli of the same intensity were used while varying the mean length of the spindle. Subthreshold receptor potentials, local responses, and propagated action potentials were recorded simultaneously from the first Ranvier node of the afferent stem fiber, thus providing detailed insight into the spike-initiating process within a sensory receptor. Relevant features of the PRN stimulus were evaluated by a preresponse averaging technique. Up to tau = 2 ms before each action potential the encoder selected a small set of steeply rising stretch transients. A second component of the preresponse stimulus ensemble (tau = 2-5 ms) opposed the overall stretch bias. Since each steeply rising stretch transient evoked a steeply rising receptor potential that guaranteed the critical slope condition of the encoding site, this stimulus profile was most effective in initiating action potentials. The dynamic range of the muscle spindle receptor extended from resting length, L0, to about L0 + 100 microns. At the lower limit (L0) the encoding membrane was depolarized to its firing level and discharged action potentials spontaneously. When random stretches larger than the upper region of the dynamic range were applied, the spindle discharged at the maximum impulse rate and displayed no depolarization block or "overstretch" phenomenon. Random stretches applied within the dynamic range evoked regular discharge patterns that were firmly coupled to the PRN. The afferent discharge rate increased, and the precision of phase-locking improved when the intensity of the PRN stimulus was increased around a constant mean stretch; or the mean prestretch level was raised to higher values while the intensity of the PRN stimulus was kept constant. In the case when the PRN stimulus covered the entire dynamic range, the temporal pattern of the afferent discharge remained constant for at least 10 consecutive sequences of PRN. A spectral analysis of the discharge patterns averaged over several sequences of PRN was employed. At the same stimulus intensity the response spectra displayed low-pass filter characteristics with a 10-dB bandwidth of 300 Hz and a high-frequency slope of -12 dB/oct. Increasing the mean intensity of the PRN stimulus or raising the prestretch level increased the response power.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document