na channel
Recently Published Documents


TOTAL DOCUMENTS

1826
(FIVE YEARS 141)

H-INDEX

110
(FIVE YEARS 7)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Xue-Ping Wang ◽  
Deidra M Balchak ◽  
Clayton Gentilcore ◽  
Nathan L Clark ◽  
Ossama B Kashlan

Vertebrates evolved mechanisms for sodium conservation and gas exchange in conjunction with migration from aquatic to terrestrial habitats. Epithelial Na+ channel (ENaC) function is critical to systems responsible for extracellular fluid homeostasis and gas exchange. ENaC is activated by cleavage at multiple specific extracellular polybasic sites, releasing inhibitory tracts from the channel’s α and γ subunits. We found that proximal and distal polybasic tracts in ENaC subunits coevolved, consistent with the dual cleavage requirement for activation observed in mammals. Polybasic tract pairs evolved with the terrestrial migration and the appearance of lungs, coincident with the ENaC activator aldosterone, and appeared independently in the a and g subunits. In summary, sites within ENaC for protease activation developed in vertebrates when renal Na+ conservation and alveolar gas exchange was required for terrestrial survival.


2021 ◽  
Author(s):  
Alexander S Haworth ◽  
Samantha L Hodges ◽  
Lori L Isom ◽  
Christoph G Baumann ◽  
William J Brackenbury

The voltage-gated Na+ channel β1 subunit, encoded by SCN1B, regulates cell surface expression and gating of α subunits, and participates in cell adhesion. β1 is cleaved by α/β and γ-secretases, releasing an extracellular domain and intracellular domain (ICD) respectively. Abnormal SCN1B expression/function is linked to pathologies including epilepsy, cardiac arrhythmia, and cancer. In this study, we sought to determine the effect of secretase cleavage on β1 function in breast cancer cells. Using a series of GFP-tagged β1 constructs, we show that β1-GFP is mainly retained intracellularly, particularly in the endoplasmic reticulum and endolysosomal pathway, and accumulates in the nucleus. Reduction in endosomal β1-GFP levels occurred following γ-secretase inhibition, implicating endosomes, and/or the preceding plasma membrane, as important sites for secretase processing. Using live-cell imaging, we report β1-ICD-GFP accumulation in the nucleus. Furthermore, β1-GFP and β1ICD-GFP both increased Na+ current, whereas β1STOP-GFP, which lacks the ICD, did not, thus highlighting that the β1-ICD was necessary and sufficient to increase Na+ current measured at the plasma membrane. Importantly, although the endogenous Na+ current expressed in MDA-MB-231 cells is TTX-resistant (carried by Nav1.5), the Na+ current increased by β1-GFP or β1ICD-GFP was TTX-sensitive. Taken together, this work suggests that the β1-ICD is a critical regulator of β subunit function. Our data further support the notion that γ-secretase may play a key role in regulating β1 function in breast cancer cells. This work thus highlights proteolytic processing of β1 by secretase cleavage to be a relevant mechanism in diseases associated with abnormal β1 function.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 47
Author(s):  
Pornsawan Khamtorn ◽  
Steve Peigneur ◽  
Fernanda Gobbi Amorim ◽  
Loïc Quinton ◽  
Jan Tytgat ◽  
...  

The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.


JCI Insight ◽  
2021 ◽  
Author(s):  
Victor N. Tomilin ◽  
Kyrylo Pyrshev ◽  
Anna Stavniichuk ◽  
Naghmeh Hassanzadeh Khayyat ◽  
Guohui Ren ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13031
Author(s):  
Marcos Rubio-Alarcón ◽  
Anabel Cámara-Checa ◽  
María Dago ◽  
Teresa Crespo-García ◽  
Paloma Nieto-Marín ◽  
...  

The ZFHX3 and SCN5A genes encode the zinc finger homeobox 3 (Zfhx3) transcription factor (TF) and the human cardiac Na+ channel (Nav1.5), respectively. The effects of Zfhx3 on the expression of the Nav1.5 channel, and in cardiac excitability, are currently unknown. Additionally, we identified three Zfhx3 variants in probands diagnosed with familial atrial fibrillation (p.M1260T) and Brugada Syndrome (p.V949I and p.Q2564R). Here, we analyzed the effects of native (WT) and mutated Zfhx3 on Na+ current (INa) recorded in HL-1 cardiomyocytes. ZFHX3 mRNA can be detected in human atrial and ventricular samples. In HL-1 cardiomyocytes, transfection of Zfhx3 strongly reduced peak INa density, while the silencing of endogenous expression augmented it (from −65.9 ± 8.9 to −104.6 ± 10.8 pA/pF; n ≥ 8, p < 0.05). Zfhx3 significantly reduced the transcriptional activity of human SCN5A, PITX2, TBX5, and NKX25 minimal promoters. Consequently, the mRNA and/or protein expression levels of Nav1.5 and Tbx5 were diminished (n ≥ 6, p < 0.05). Zfhx3 also increased the expression of Nedd4-2 ubiquitin-protein ligase, enhancing Nav1.5 proteasomal degradation. p.V949I, p.M1260T, and p.Q2564R Zfhx3 produced similar effects on INa density and time- and voltage-dependent properties in WT. WT Zfhx3 inhibits INa as a result of a direct repressor effect on the SCN5A promoter, the modulation of Tbx5 increasing on the INa, and the increased expression of Nedd4-2. We propose that this TF participates in the control of cardiac excitability in human adult cardiac tissue.


Author(s):  
Shujie Shi ◽  
Teresa M. Buck ◽  
Andrew J. Nickerson ◽  
Jeffrey L. Brodsky ◽  
Thomas R. Kleyman

The mammalian paraoxonases have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2 and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in Fisher Rat Thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts prior to ENaC subunits ubiquitination. As a result of the enhanced ENaC subunits ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirect the channel for ER associated degradation.


2021 ◽  
Vol 22 (23) ◽  
pp. 12990
Author(s):  
Farbod Sedaghat-Hamedani ◽  
Sabine Rebs ◽  
Ibrahim El-Battrawy ◽  
Safak Chasan ◽  
Tobias Krause ◽  
...  

Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na+ channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.


2021 ◽  
Author(s):  
Fan Wang ◽  
Jingjing Xu ◽  
Yanbin Ge ◽  
Shengyong Xu ◽  
Yanjun Fu ◽  
...  

Abstract The physical processes occurring at open Na+ channels in neural fibers are essential for understanding the nature of neural signals and the mechanism by which the signals are generated and transmitted along nerves. However, there is less generally accepted description of these physical processes. We studied changes in the transmembrane ionic flux and the resulting two types of electromagnetic signals by simulating the Na+ transport across a bionic nanochannel model simplified from voltage-gated Na+ channels. Results show that the Na+ flux can reach a steady state in approximately 10 ns owing to the dynamic equilibrium of Na+ ions concentration difference between the both sides of membrane. After characterizing the spectrum and transmission of these two electromagnetic signals, the low-frequency transmembrane electric field is regarded as the physical quantity transmitting in waveguide-like lipid dielectric layer and triggering the neighboring voltage-gated channels. Factors influencing the Na+ flux transport are also studied. The impact of the Na+ concentration gradient is found higher than that of the initial transmembrane potential on the Na+ transport rate, and introducing the surface-negative charge in the upper third channel could increase the transmembrane Na+ current. This work can be further studied by improving the simulation model; however, the current work helps to better understand the electrical functions of voltage-gated ion channels in neural systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin M. Zemel ◽  
Alexander A. Nevue ◽  
Andre Dagostin ◽  
Peter V. Lovell ◽  
Claudio V. Mello ◽  
...  

AbstractThe underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4’s C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.


Sign in / Sign up

Export Citation Format

Share Document