scholarly journals Shock-wave solutions of the einstein equations: The Oppenheimer-Snyder model of gravitational collapse extended to the case of non-zero pressure

1994 ◽  
Vol 128 (3) ◽  
pp. 249-297 ◽  
Author(s):  
Joel Smoller ◽  
Blake Temple
1995 ◽  
Vol 51 (6) ◽  
pp. 2733-2743 ◽  
Author(s):  
Joel Smoller ◽  
Blake Temple

2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


2006 ◽  
Vol 15 (12) ◽  
pp. 2217-2222 ◽  
Author(s):  
PIOTR BIZOŃ ◽  
BERND G. SCHMIDT

It is fair to say that our current mathematical understanding of the dynamics of gravitational collapse to a black hole is limited to the spherically symmetric situation and, in fact, even in this case much remains to be learned. The reason is that Einstein's equations become tractable only if they are reduced to a (1 + 1)-dimensional system of partial differential equations. Owing to this technical obstacle, very little is known about the collapse of pure gravitational waves because by Birkhoff's theorem there is no spherical collapse in vacuum. In this essay, we describe a new cohomogeneity-two symmetry reduction of the vacuum Einstein equations in five and higher odd dimensions which evades Birkhoff's theorem and admits time-dependent asymptotically flat solutions. We argue that this model provides an attractive (1 + 1)-dimensional geometric setting for investigating the dynamics of gravitational collapse in vacuum.


2012 ◽  
Vol 21 (08) ◽  
pp. 1250066 ◽  
Author(s):  
PANKAJ S. JOSHI ◽  
DANIELE MALAFARINA ◽  
RAVINDRA V. SARAYKAR

Here we investigate the genericity and stability aspects for naked singularities and black holes that arise as the final states for a complete gravitational collapse of a spherical massive matter cloud. The form of the matter considered is a general Type I matter field, which includes most of the physically reasonable matter fields such as dust, perfect fluids and such other physically interesting forms of matter widely used in gravitation theory. Here, we first study in some detail the effects of small pressure perturbations in an otherwise pressure-free collapse scenario, and examine how a collapse evolution that was going to the black hole endstate would be modified and go to a naked singularity, once small pressures are introduced in the initial data. This allows us to understand the distribution of black holes and naked singularities in the initial data space. Collapse is examined in terms of the evolutions allowed by Einstein equations, under suitable physical conditions and as evolving from a regular initial data. We then show that both black holes and naked singularities are generic outcomes of a complete collapse, when genericity is defined in a suitable sense in an appropriate space.


2011 ◽  
Vol 89 (9) ◽  
pp. 979-984 ◽  
Author(s):  
Houria Triki ◽  
B.J.M. Sturdevant ◽  
T. Hayat ◽  
O.M. Aldossary ◽  
A. Biswas

This study obtained the shock wave or kink solutions of the variants of the Kadomtsev–Petviashvili equation with generalized evolution. There are three types of variants of this equation that were considered. The relation between the parameters and the constraint conditions will naturally fall out as a consequence of the derivation of the shock wave solution.


Sign in / Sign up

Export Citation Format

Share Document