Experimental analysis of byssus thread production by Mytilus edulis and Modiolus modiolus in sediments

1989 ◽  
Vol 101 (2) ◽  
pp. 219-226 ◽  
Author(s):  
P. S. Meadows ◽  
P. Shand
2021 ◽  
Vol 11 (2) ◽  
pp. 46-60
Author(s):  
Igor Bakhmet ◽  
Natalia Fokina ◽  
Tatiana Ruokolainen

Blue mussels, Mytilus edulis, inhabiting tidal zones, are naturally exposed to fluctuating environmental conditions (e.g., fluctuations in temperature and salinities), while horse mussels, Modiolus modiolus, live under relatively invariable shelf water conditions. The present investigation tested the hypothesis: blue mussels, in comparison to horse mussels, have an increased ability to tolerate the stress of pollution combined with low salinity. To assess the response of blue mussels and horse mussels to oil pollution at seawater salinities of 25 psu (normal) and 15 psu (low), we used a combination of heart rate and lipid composition as physiological and biochemical indicators, respectively. A sharp decrease in heart rate as well as important fluctuations in cardiac activity was observed under all oil concentrations. Modifications in the concentrations of the main membrane lipid classes (phosphatidylcholine, phosphatidylethanolamine, and cholesterol) and storage lipids (primarily triacylglycerols) in response to different crude oil concentrations were time- and dose-dependent. Both chosen indicators showed a high sensitivity to crude oil contamination. Furthermore, both bivalve species showed similar responses to oil pollution, suggesting a universal mechanism for biochemical adaptation to crude oil pollution.


1973 ◽  
Vol 30 (10) ◽  
pp. 1583-1585 ◽  
Author(s):  
Carol M. Morrison ◽  
Paul H. Odense

A study of the gross structure of adductor muscles of the following pelecypods showed that they conform to Morton’s grouping into the a) "Protobranchia" (Nucula proxima and Yoldia limatula), b) "shallow-burrowing lamellibranchs" (Clinocardium ciliatum, Venericardia borealis, Astarte undata, Arctica islandica, Venus mercenaria, and Spisula solidissima), c) "surface attached lamellibranchs" (Mytilus edulis, Modiolus modiolus, Modiolus demissus, Placopecten magellanicus, and Crassostrea virginica), d) "deep-burrowing and immobile lamellibranchs" (Ensis directus, Hiatella arctica, and Mya arenaria); thus providing more evidence for his classification. The adductor muscle is divided into two portions — translucent and opaque — except in the "deep-burrowing and immobile lamellibranchs", which have opaque muscles only.


Sign in / Sign up

Export Citation Format

Share Document