scholarly journals Changes of Heart Rate and Lipid Composition in Mytilus Edulis and Modiolus Modiolus Caused by Crude Oil Pollution and Low Salinity Effects

2021 ◽  
Vol 11 (2) ◽  
pp. 46-60
Author(s):  
Igor Bakhmet ◽  
Natalia Fokina ◽  
Tatiana Ruokolainen

Blue mussels, Mytilus edulis, inhabiting tidal zones, are naturally exposed to fluctuating environmental conditions (e.g., fluctuations in temperature and salinities), while horse mussels, Modiolus modiolus, live under relatively invariable shelf water conditions. The present investigation tested the hypothesis: blue mussels, in comparison to horse mussels, have an increased ability to tolerate the stress of pollution combined with low salinity. To assess the response of blue mussels and horse mussels to oil pollution at seawater salinities of 25 psu (normal) and 15 psu (low), we used a combination of heart rate and lipid composition as physiological and biochemical indicators, respectively. A sharp decrease in heart rate as well as important fluctuations in cardiac activity was observed under all oil concentrations. Modifications in the concentrations of the main membrane lipid classes (phosphatidylcholine, phosphatidylethanolamine, and cholesterol) and storage lipids (primarily triacylglycerols) in response to different crude oil concentrations were time- and dose-dependent. Both chosen indicators showed a high sensitivity to crude oil contamination. Furthermore, both bivalve species showed similar responses to oil pollution, suggesting a universal mechanism for biochemical adaptation to crude oil pollution.

2016 ◽  
Vol 320 (3) ◽  
pp. 357-366 ◽  
Author(s):  
N.N. Fokina ◽  
I.N. Bakhmet ◽  
N.N. Nemova

The response of the organism to the pollutant impact is influenced by a variety of abiotic and biotic environmental factors that may have a synergistic or antagonistic effect on the biodegradation, accumulation, distribution and elimination of the xenobiotics. It is known that lipophilic organic contaminants including oil hydrocarbons can be accumulated in lipid-rich tissues of marine animals, thus causing changes in biosynthesis and transport of phospholipids and triacylglycerols, as well as in the physical state of biological membranes. The cooperative effect of crude oil and low salinity on digestive gland lipid composition of the White Sea blue mussels Mytilus edulis L. was studied in aquarium experiment. Low salinity (15‰) impact reflects on the lipid composition indicating high energy costs directed to acclimation of the mussels to new environmental conditions. However, the response of the lipid composition on the crude oil effect is almost not dependent on the ambient salinity, and is mainly determined by exposure duration to crude oil and its dose in aquarium water. On the third experimental day a significant increase in the cholesterol/phospholipids ratio and the subsequent its recovery to initial level possibly indicate the development of the protective compensatory mechanisms to provide low permeability of cell membranes in digestive glands under crude oil pollution. It was observed that the leading factor contributing the lipid composition modifications in blue mussel digestive glands is crude oil effect, mainly in its higher concentrations.


Author(s):  
Igor N. Bakhmet ◽  
Andrey Sazhin ◽  
Nikolay Maximovich ◽  
Dmitry Ekimov

AbstractCardiac activity of two White Sea Bivalvia species – Mytilus edulis and Modiolus modiolus – was monitored in situ for one full calendar year every 4 days. During the year, we also assessed the temperature and salinity of the ambient seawater (at intervals of 1 min), measured phytoplankton concentration (every 4 days) and checked the reproductive status of the molluscs (every 2 weeks). Our field study showed a significant linear correlation between the molluscs’ heart rates and the temperature of the ambient seawater. However, during specific periods of the year, we observed that phytoplankton composition or reproductive status became the dominant influence over cardiac activity. Phytoplankton concentrations were generally found to be low throughout the entire year, but two peak periods of drastically elevated phytoplankton concentration were found (April and May), and during April the peak heart rates of the blue mussels significantly increased. Spawning time took place in the middle of June, and at this time the cardiac activity of the molluscs did not change in spite of a 4°C temperature increase in the ambient seawater. Monitoring of the heart rates of the real intertidal blue mussels (animals located at the middle part of intertidal) revealed periodic fluctuations in cardiac activity that correlated strongly with tidal fluctuations. Cardiac activity in M. modiolus was significantly lower than in M. edulis from 9 May to 25 November. On the basis of our data, we concluded that the molluscs’ cardiac activity can serve not only as an indicator of the animals’ physiological conditions, but also as an indicator of changes in ambient factors.


Author(s):  
Segun Gbolagade Jonathan ◽  
Michael Asemoloye ◽  
Rafiq Ahmad ◽  
O. Joseph Olawuyi ◽  
Damilola Adejoye

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Chinemerem ELEKE ◽  
Sabinah Obele NGBALA-OKPABI ◽  
Daprim OGAJI ◽  
Ifeyinwa S. AGU ◽  
Esther N. BEMPONG-ELEKE

2019 ◽  
Vol 67 ◽  
pp. 61-65 ◽  
Author(s):  
Leonardo Ramón Leggieri ◽  
Julieta S. De Anna ◽  
Juan G. Cárcamo ◽  
Gerardo A. Cerón ◽  
Luis Arias Darraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document