thread formation
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tobias Priemel ◽  
Gurveer Palia ◽  
Frank Förste ◽  
Franziska Jehle ◽  
Ioanna Mantouvalou ◽  
...  

<p>To anchor in seashore habitats, mussels fabricate adhesive byssus fibers mechanically reinforced by protein-metal coordination mediated via 3,4-dihydroxyphenylalanine (DOPA) – providing a well-established role model for bio-inspired design of smart metallopolymers and underwater glues. However, currently, the mechanism by which metal ions are integrated as cross-links during byssus formation is completely unknown. Here, we investigated the byssus formation process, combining traditional and advanced methods to identify how and when metals are incorporated into the material. We discovered that mussels concentrate and store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based storage molecules. During thread formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a complex microfluidic-like network of interconnected channels where they coalesce forming protein-metal bonds within the nascent byssus. These insights are important for bio-inspired materials design, but also from a biological and chemical perspective – the active accumulation and utilization of vanadium is extremely rare in nature.</p>


2021 ◽  
Author(s):  
Tobias Priemel ◽  
Gurveer Palia ◽  
Frank Förste ◽  
Franziska Jehle ◽  
Ioanna Mantouvalou ◽  
...  

<p>To anchor in seashore habitats, mussels fabricate adhesive byssus fibers mechanically reinforced by protein-metal coordination mediated via 3,4-dihydroxyphenylalanine (DOPA) – providing a well-established role model for bio-inspired design of smart metallopolymers and underwater glues. However, currently, the mechanism by which metal ions are integrated as cross-links during byssus formation is completely unknown. Here, we investigated the byssus formation process, combining traditional and advanced methods to identify how and when metals are incorporated into the material. We discovered that mussels concentrate and store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based storage molecules. During thread formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a complex microfluidic-like network of interconnected channels where they coalesce forming protein-metal bonds within the nascent byssus. These insights are important for bio-inspired materials design, but also from a biological and chemical perspective – the active accumulation and utilization of vanadium is extremely rare in nature.</p>


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 32
Author(s):  
Emmanuel P. Georgiou ◽  
Dirk Drees ◽  
Michel De Bilde ◽  
Michael Anderson ◽  
Matthias Carlstedt ◽  
...  

In this work, we report on the most recent progress in studying temperature influence on tackiness of greases, as well as the reproducibility of the method. Tackiness and adhesion of greases have been identified as key intrinsic properties that can influence their functionality and performance. During the last eight years, a reliable method to quantify the tackiness and adhesion of greases has evolved from an experimental lab-scale set-up towards a standardised approach, including an ASTM method and a dedicated test tool. The performance of lubricating greases—extensively used in diverse industrial applications—is strongly dependent on their adherence to the substrate, cohesion and thread formation or tackiness of the greases. This issue attracts more and more industrial interest as the complexity in grease formulation evolves and it is harder to differentiate between available greases. With this method, grease formulators will have an efficient measurement tool to support their work.


2020 ◽  
Vol 2020 (11) ◽  
pp. 3-7
Author(s):  
Alexander Prokofiev

The problems in technological support of external and internal thread are considered. There are presented different methods for external and internal thread formation. Particular attention is paid to the methods of internal thread deformation. There are shown investigation results on external thread electro-machining.


2020 ◽  
Author(s):  
Matthieu Bourdon ◽  
Josephine Gaynord ◽  
Karin Müller ◽  
Gareth Evans ◽  
Simon Wallis ◽  
...  

AbstractDionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic “wooly” farina. This contrasts with some related Primula which instead possess a powdery farina. Using a combination of cell biology and analytical chemical techniques, we provide a detailed insight of wooly farina formation by glandular trichomes that produce a mixture of flavone and substituted flavone derivatives, including hydroxyflavones. Conversely, our analysis show that the powdery form consist almost entirely of flavone. The wooly farina in D. tapetodes is extruded through specific sites at the surface of the glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle. The data is consistent with formation and thread elongation occurring from within the cell. The putative mechanism of wool thread formation and its stability is discussed.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Shaun Ferguson ◽  
Anthony S. Major ◽  
John T. Sullivan ◽  
Scott D. Bourke ◽  
Simon J. Kelly ◽  
...  

ABSTRACT Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts. IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Hien P. Nguyen ◽  
Safirah T. N. Ratu ◽  
Michiko Yasuda ◽  
Neung Teaumroong ◽  
Shin Okazaki

Bradyrhizobium elkanii USDA61 possesses a functional type III secretion system (T3SS) that controls host-specific symbioses with legumes. Here, we demonstrated that B. elkanii T3SS is essential for the nodulation of several southern Asiatic Vigna mungo cultivars. Strikingly, inactivation of either Nod factor synthesis or T3SS in B. elkanii abolished nodulation of the V. mungo plants. Among the effectors, NopL was identified as a key determinant for T3SS-dependent symbiosis. Mutations of other effector genes, such as innB, nopP2, and bel2-5, also impacted symbiotic effectiveness, depending on host genotypes. The nopL deletion mutant formed no nodules on V. mungo, but infection thread formation was still maintained, thereby suggesting its pivotal role in nodule organogenesis. Phylogenetic analyses revealed that NopL was exclusively conserved among Bradyrhizobium and Sinorhizobium (Ensifer) species and showed a different phylogenetic lineage from T3SS. These findings suggest that V. mungo evolved a unique symbiotic signaling cascade that requires both NFs and T3Es (NopL).


2019 ◽  
Vol 132 (5) ◽  
pp. 641-653 ◽  
Author(s):  
Meng Liu ◽  
Takashi Soyano ◽  
Koji Yano ◽  
Makoto Hayashi ◽  
Masayoshi Kawaguchi

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 498 ◽  
Author(s):  
Mariel Isidra-Arellano ◽  
María Reyero-Saavedra ◽  
Maria Sánchez-Correa ◽  
Lise Pingault ◽  
Sidharth Sen ◽  
...  

Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.


Author(s):  
Mariel C Isidra-Arellano ◽  
María del Rocio Reyero-Saavedra ◽  
María del Socorro Sánchez-Correa ◽  
Lise Pingault ◽  
Sidharth Sen ◽  
...  

Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite the significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialog between legumes and rhizobia, if so, what part of the molecular dialog is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, genes controlling the nodulation process, were significantly reduced in Pi-deficient common bean seedlings. Further transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Additionally, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule number, was higher in Pi-deficient seedlings than in control seedlings. The data presented in this study shed light on the understanding of how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.


Sign in / Sign up

Export Citation Format

Share Document