oxygen stable isotope
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 371 ◽  
pp. 131113
Author(s):  
Fumikazu Akamatsu ◽  
Hideaki Shimizu ◽  
Sakura Hayashi ◽  
Aya Kamada ◽  
Yukari Igi ◽  
...  

Data in Brief ◽  
2021 ◽  
pp. 107711
Author(s):  
Sangeeta Mahajan ◽  
Vijay Sathe ◽  
Niraj Rai ◽  
Shailesh Agrawal ◽  
Supriyo Chakraborty

2021 ◽  
Vol 19 ◽  
Author(s):  
Cristina Sequero ◽  
Giovanna Della Porta ◽  
Beatriz Bádenas ◽  
Marcos Aurell

Bulk carbon and oxygen stable isotopes of ancient shallow-marine carbonates can record the effects of multiple palaeoenvironmental factors, but also the imprint of several post-depositional processes, which may alter the original marine isotopic composition. In this study, carbon and oxygen stable isotope analyses were performed on bulk carbonate, bivalve calcitic-shell (Trichites) and calcite vein samples from two stratigraphic sections (Tosos and Fuendetodos, present-day distance 15km), representing proximal inner- and distal mid-ramp environments, respectively, of the uppermost Kimmeridgian ramp facies deposited in the northern Iberian Basin (NE Spain). These successions underwent different diagenetic pathways that altered the primary marine isotopic composition in each section in different ways. Different burial histories, tectonic uplift and a variable exposure to meteoric diagenesis from the end of the Kimmeridgian to the Cenozoic (following Alpine tectonic uplift) are reflected in the different alteration patterns of the carbon and oxygen stable isotope signatures. A significant deviation to lower values in both δ13O and δ18O is recorded in those carbonates mostly exposed to meteoric diagenesis (distal mid-ramp Fuendetodos section), because of post-depositional tectonic uplift (telogenesis). On the other hand, the deposits mainly affected by burial diagenesis (proximal inner-ramp Tosos section) only record low δ18O with respect to expected values for pristine Kimmeridgian marine carbonates. The different burial and tectonic uplift histories of these deposits in each sector, due to their different tectonic evolution in this part of the basin, resulted in a variable degree of diagenetic resetting. However, in spite of the different diagenetic resetting reported of the carbon and oxygen stable isotope signatures in each section, these carbonates show similar cement types in termsof fabrics and cathodoluminescence properties. The diagenetic resetting reported for these carbonates prevents the use of the δ13O and δ18O records for addressing palaeoenvironmental interpretations, but instead highlights useful features regarding the variable diagenetic overprint of the studied shallow-marine carbonate successions concerning their specific post-depositional history.


2021 ◽  
Vol 91 (5) ◽  
pp. 464-478
Author(s):  
Laura A. Dupont ◽  
L. Bruce Railsback ◽  
Julia E. Cox

ABSTRACT The uncertainty of measurements of carbon and oxygen stable-isotope ratios of carbonate materials is commonly assumed to be the analytical uncertainty determined from replicate analyses of single samples, but this ignores the possibility that heterogeneity of the material studied is greater than the analytical uncertainty. To test this question, we took eight samples from each of 13 layers or specimens of various non-marine (“continental”) carbonates and found ranges of δ13C and δ18O of 0.3 to 5.1‰, all exceeding the range of the typical lab-reported analytical uncertainty, ± 0.1‰, placed around single samples. These results are similar to previous replicate sampling of marine limestone layers, which revealed ranges of 0.2 to 2.8‰. Both sets of results, and other published data, demonstrate that analytical uncertainty derived from replicate analysis of a single sample is not a valid estimate of the uncertainty of δ13C or δ18O values characterizing a layer or specimen, and they remind us that we should not place great credence in anomalies or events defined by single samples of layers or specimens, regardless of the replication of analysis of that single sample. Our results indicate that the required layer-level or specimen-level uncertainty can be derived only from replicate sampling at different locations in layers or specimens, and that the layer-level or specimen-level uncertainty is inevitably greater than typical lab-reported analytical uncertainty. Credibility of anomalies or events in time series would be increased by replicate sampling of a random or dispersed subset of layers to estimate the variability of all layers and/or by replicate sampling of layers at and around a potential but unconfirmed event. The significance of the variability discussed above is evident in use of δ18O data to estimate paleotemperatures, where a difference of 1‰ in δ18O implies a difference of 4°C in temperature. Use of a single sample resulting in mischaracterization of the δ18O of an ancient material by 1.5‰ relative to the true mean for that material (which our results suggest is quite possible) would lead to a corresponding misestimation of temperature of 6°C, a significant difference in paleoenvironmental studies.


2021 ◽  
Author(s):  
Wenyi Qin ◽  
Guo Chen ◽  
Peng Wang ◽  
Xiang Wang ◽  
Xiaozhen Li

<p>Hydrogen and oxygen stable isotope compositions in soil waters have been widely used to investigate hydrologic cycles, particularly for understanding plant water usage. However, most studies of soil water isotopes have traditionally ignored the importance of O-horizon that may potentially influence the accurate evaluation of hydrologic processes, especially in alpine regions where O-horizon are thick due to low temperatures. Therefore, we investigated the isotopic differences (via mean effect size, lnRR) of waters from O-horizon and 0–10 cm soil layer in grasslands and woodlands of Western Sichuan alpine regions and evaluated the influences of climatic and biotic factors on observed differences. The results indicated that the δ<sup>2</sup>H and δ<sup>18</sup>O of O-horizon water were significantly higher than those of the 0–10 cm soil layer in grasslands, but these differences were not significant in woodlands. The influence of climatic factors on lnRR was limited relative to biotic factors, and the influence of climate contrasted with expectations based on evaporation principles. Rather, above ground biomass (AGB) was the most important factor associated with lnRR and it was significantly correlated with lnRR between and within soil waters from two vegetation types. Consequently, the observed differences were mainly related to vegetation conditions that influence microclimates within canopies. Therefore, investigations of hydrological processes may inaccurately estimate their influences when not separately considering the high stable isotopes values of O-horizon in grasslands of alpine regions with thin soil layers. In particular, the influence of O-horizon should especially be considered when AGB was lower than 100 t/hm<sup>2</sup> not only in grassland but also in other vegetation types.</p>


Author(s):  
Sarah Magozzi ◽  
Clement P. Bataille ◽  
Keith A. Hobson ◽  
Michael B. Wunder ◽  
John D. Howa ◽  
...  

2021 ◽  
Author(s):  
Jack Stacey ◽  
et al.

Geochemical data for dolomite and limestone (trace element, rare earth element, carbon and oxygen stable isotope, clumped oxygen isotope, noble gas, fluid inclusion and bulk rock XRD) of the Middle Cambrian Cathedral Formation, Southern Canadian Rocky Mountains.


2021 ◽  
Author(s):  
Jack Stacey ◽  
et al.

Geochemical data for dolomite and limestone (trace element, rare earth element, carbon and oxygen stable isotope, clumped oxygen isotope, noble gas, fluid inclusion and bulk rock XRD) of the Middle Cambrian Cathedral Formation, Southern Canadian Rocky Mountains.


2021 ◽  
Vol 33 (6) ◽  
pp. 1742-1752
Author(s):  
Zha Junzhen ◽  
◽  
Jiang Chunlu ◽  
Chen Xing ◽  
An Shikai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document