The Kapitza thermal boundary resistance

1973 ◽  
Vol 11 (5-6) ◽  
pp. 639-665 ◽  
Author(s):  
R. E. Peterson ◽  
A. C. Anderson
2018 ◽  
Author(s):  
Young Gwan Choi ◽  
Chan June Zhung ◽  
Chang Jae Roh ◽  
Hwi In Ju ◽  
Tae Yun Kim ◽  
...  

Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

2015 ◽  
Vol 107 (8) ◽  
pp. 084103 ◽  
Author(s):  
M. Tovar-Padilla ◽  
L. Licea-Jimenez ◽  
S. A. Pérez-Garcia ◽  
J. Alvarez-Quintana

2021 ◽  
Vol 218 (23) ◽  
pp. 2170063
Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

Author(s):  
Mohamadali Malakoutian ◽  
Daniel E. Field ◽  
Nicholas J. Hines ◽  
Shubhra Pasayat ◽  
Samuel Graham ◽  
...  

Author(s):  
Ruijie Zhao ◽  
Yunfei Chen ◽  
Kedong Bi ◽  
Meihui Lin ◽  
Zan Wang

A modified lattice-dynamical model is proposed to calculate the thermal boundary resistance at the interface between two fcc lattices. The nonequilibrium molecular dynamics (MD) simulation is employed to verify the theoretical calculations. In our physical model, solid crystal argon is set at the left side and the right side structure properties are tunable by setting the atomic mass and the interactive energy strength among atoms with different values. In the case of mass mismatch, the predictions of the lattice-dynamical (LD) model agree well at low temperature while the calculations of the diffuse mismatch model (DMM) based on the detailed phonon dispersion agree well at high temperature with the MD simulations. The modified LD model, considering a partially specular and partially diffuse phonon scattering, can explain the simulations reasonably in the whole temperature rage. The good agreement between the theoretical calculations and the simulations may be attributed to that phonon scattering mechanisms are dominated by elastic scattering at the perfect interfaces. In the case of interactive energy strength mismatch, the simulations are under the predictions of both the theoretical models, which may be attributed to the fact that this mismatch can bring about an outstanding contribution to opening up an inelastic channel for heat transfer at the interfaces.


Sign in / Sign up

Export Citation Format

Share Document