boundary resistance
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 60)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Xiaojuan Lian ◽  
Jinke Fu ◽  
Zhixuan Gao ◽  
Wang Ren ◽  
Xiang Wan ◽  
...  

Phase-change random access memory (PCRAM) is widely regarded as one of the most promising candidates to replace Flash memory as the next generation of non-volatile memories due to its high-speed and low-power consumption characteristics. Recent advent of the blade-type PCRAM with low programming current merit further confirms its prospects. The thermoelectric effects existing inside the PCRAM devices have always been an important factor that determines the phase-transformation kinetics due to a fact that it allows PCRAM to have electric polarity dependent characteristics. However, the potential physics governing the thermoelectric effects for blade-type PCRAM device still remains vague. We establish a three-dimensional (3D) electro-thermal and phase-transformation model to study the influences of thermal boundary resistance (TBR) and device scaling on the thermoelectric effects of the blade-type PCRAM during its “RESET” operation. Our research shows that the presence of TBR significantly improves the electric polarity-dependent characteristics of the blade-type PCRAM, and such polarity-dependent characteristic is found immune to the scaling of the device. It is therefore possible to optimize the thermoelectric effects of the blade-type PCRAM through appropriately tailoring the TBR parameters, thus further lowering resulting power consumption.


Author(s):  
Mohamadali Malakoutian ◽  
Daniel E. Field ◽  
Nicholas J. Hines ◽  
Shubhra Pasayat ◽  
Samuel Graham ◽  
...  

2021 ◽  
Vol 218 (23) ◽  
pp. 2170063
Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

Author(s):  
Mihails Kusnezoff ◽  
Dörte Wagner ◽  
Jochen Schilm ◽  
Christian Heubner ◽  
Björn Matthey ◽  
...  

AbstractCrystallization of highly ionic conductive N5 (Na5YSi4O12) phase from melted Na3+3x-1Y1-xPySi3-yO9 parent glass provides an attractive pathway for cost-effective manufacturing of Na-ion conducting thin electrolyte substrates. The temperature-dependent crystallization of parent glass results in several crystalline phases in the microstructure (N3 (Na3YSi2O7), N5 and N8 (Na8.1Y Si6O18) phases) as well as in rest glass phase with temperature dependent viscosity. The electrical properties of dense parent glass and of compositions densified and crystallized at 700 °C, 800 °C, 900 °C, 1000 °C, and 1100 °C are investigated by impedance spectroscopy and linked to their microstructure and crystalline phase content determined by Rietveld refinement. The parent glass has high isolation resistance and predominantly electrons as charge carriers. For sintering at ≥ 900 °C, sufficient N5 phase content is formed to exceed the percolation limit and form ion-conducting pathways. At the same time, the highest content of crystalline phase and the lowest grain boundary resistance are observed. Further increase of the sintering temperature leads to a decrease of the grain resistance and an increase of grain boundary resistance. The grain boundary resistance increases remarkably for samples sintered at 1100 °C due to softening of the residual glass phase and wetting of the grain boundaries. The conductivity of fully crystallized N5 phase (grain conductivity) is calculated from thorough impedance spectra analysis using its volume content estimated from Rietveld analysis, density measurements and assuming reasonable tortuosity to 2.8 10−3 S cm−1 at room temperature. The excellent conductivity and easy processing demonstrate the great potential for the use of this phase in the preparation of solid-state sodium electrolytes.


2021 ◽  
Vol 21 (8) ◽  
pp. 4434-4437
Author(s):  
Ra-Seong Ki ◽  
Kwang-Seok Seo ◽  
Ho-Young Cha

Heat dissipation properties are very important in AlGaN/GaN RF high electron mobility transistor (HEMT) devices operating at high frequency and high power. Therefore, in order to extract the thermal conductivity of the substrate and device, which are essential for the analysis of the heat dissipation characteristics, various methods of extraction were attempted. And this experiments were conducted in parallel with micro-raman measurement and thermal simulation. As a result, it was possible to extract the thermal conductivity of each GaN-on-diamond epi layer by matching the thermal simulation data and the shift of the micro-raman peak according to various operating states and temperatures of the transmission line method (TLM) pattern. In particular, we tried to extract the thermal boundary resistance (TBR) of the interface layer (SiNx) for adhesion between GaN and diamond, which greatly affects the thermal conductivity of the device, and successfully extracted the following thermal conductivity value of KTBR = 3.162·(T/300)−0.8 (W/mK) from GaN and diamond interface layer.


Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

Sign in / Sign up

Export Citation Format

Share Document