Radiation protection for the parent and child in diagnostic nuclear medicine

1991 ◽  
Vol 18 (12) ◽  
Author(s):  
P.J. Mountford
2019 ◽  
Vol 4 (2) ◽  

In nuclear medicine, radiopharmaceuticals are administered to the patient either for the production of diagnostic images or with the intention to treat using the emitted radiation from the radiopharmaceutical. The increased use of PET-imaging causes a need for new planning of radiation protection. In radionuclide therapy, the activities are higher and the radionuclides used are often different from those used in diagnostic nuclear medicine and constitute a greater radiation protection problem. In both diagnostic and therapeutic nuclear medicine, the patient becomes a source of radiation not only for him/herself but also for staff, caregivers and the general public. All categories of staff members involved in nuclear medicine must have good knowledge of radiation protection. This is vital for patient safety as well as for the staff's own security, for caregivers and the general public.


1982 ◽  
Vol 21 (03) ◽  
pp. 85-91 ◽  
Author(s):  
R. Poppitz

Um die Strahlenexposition und das Strahlenrisiko für die Bevölkerung durch die nuklearmedizinische Diagnostik in Bulgarien zu ermitteln, wurde eine Erhebung für das Jahr 1980 über die Arten und Anzahl der Applikationen von Radiopharmaka, über die verwendeten Aktivitäten und über die Geschlechts- und Altersverteilung der untersuchten Patienten durchgeführt. Die Gesamtzahl diagnostischer in vivo Applikationen betrug 116418 (davon 40,5% bei Männern und 59,5% bei Frauen), d.h. 13,1 Applikationen per 1000 Einwohner. Die applizierte Gesamtaktivität aller 44 verwendeter Radiopharmaka betrug ca. 2,1 TBq (56 Ci). Die Geschlechts- und Altersverteilung der untersuchten Patienten war ähnlich jener in anderen Ländern: nur 17,4% aller Patienten waren im reproduktionsfähigen Alter, 52,7% waren über 45 Jahre alt. Im Vergleich zu anderen entwickelten Ländern war in Bulgarien im Jahr 1980 der Anteil der 131J-Jodid-Untersuchungen verhältnismäßig hoch.


2008 ◽  
Vol 47 (06) ◽  
pp. 267-274 ◽  
Author(s):  
F. Boldt ◽  
C. Kobe ◽  
W. Eschner ◽  
H. Schicha ◽  
F. Sudbrock

Summary Aim: After application of radiopharmaceuticals the patient becomes a radioactive source which leads to radiation exposure in the proximity. The photon dose rates after administration of different radiopharmaceuticals used in diagnostic nuclear medicine were measured at several distances and different time intervals. These data are of importance for estimating the exposure of technologists and members of the public. Patients, method: In this study dose rates were measured for 67 patients after application of the following radiopharmaceuticals: 99mTc-HDP as well as 99mTcpertechnetate, 18F-fluorodeoxyglucose, 111In-Octreotid and Zevalin® and 123I-mIBG in addition to 123I-NaI. The dose rates were measured immediately following application at six different distances to the patient. After two hours the measurements were repeated and – whenever possible – after 24 hours and seven days. Results: Immediately following application the highest dose rates were below 1 mSv / h: with a maximum at 780 μSv/h for 18F (370 MBq), 250 μSv/h for 99mTc (700 MBq), 150 μSv/h for 111In (185 MBq) and 132 μSv/ h for 123I (370 MBq). At a distance of 0.5 m the values decrease significantly by an order of magnitude. Two hours after application the values are diminished to 1/3 (99mTc, 18F), to nearly ½ (123I) but remain in the same order of magnitude for the longer-lived 111In radiopharmaceuticals. Conclusion: For greater distances the doses remain below the limits outlined in the national legislation.


2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 1087-1120 ◽  
Author(s):  
Nkemakonam C. Okoye ◽  
Jakob E. Baumeister ◽  
Firouzeh Najafi Khosroshahi ◽  
Heather M. Hennkens ◽  
Silvia S. Jurisson

Abstract Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document