Analytical solution of the one-dimensional problem of moderately strong evaporation (and condensation) in a half-space

1993 ◽  
Vol 34 (1) ◽  
pp. 97-103
Author(s):  
A. V. Latyshev ◽  
A. A. Yushkanov
Author(s):  
M. G. Smith

AbstractThe double integral equation, which takes the place of the Milne equation in the one-dimensional problem, is derived from the governing partial differentio-integral equations. An analytical solution of the problem of a distribution of point sources on a plane, when the other boundaries are at infinity, is then found. The possibility of more complicated boundary conditions is discussed.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


An analytical solution of Riemann’s equations for the one-dimensional propagation of sound waves of finite amplitude in a gas obeying the adiabatic law p = k ρ γ is obtained for any value of the parameter γ. The solution is in the form of a complex integral involving an arbitrary function which is found from the initial conditions by solving a generalization of Abel’s integral equation. The results are applied to the problem of the expansion of a gas cloud into a vacuum.


2015 ◽  
Vol 25 (01) ◽  
pp. 15-36 ◽  
Author(s):  
Bettina Speckmann ◽  
Kevin Verbeek

Necklace maps visualize quantitative data associated with regions by placing scaled symbols, usually disks, without overlap on a closed curve (the necklace) surrounding the map regions. Each region is projected onto an interval on the necklace that contains its symbol. In this paper we address the algorithmic question how to maximize symbol sizes while keeping symbols disjoint and inside their intervals. For that we reduce the problem to a one-dimensional problem which we solve efficiently. Solutions to the one-dimensional problem provide a very good approximation for the original necklace map problem. We consider two variants: Fixed-Order, where an order for the symbols on the necklace is given, and Any-Order where any symbol order is possible. The Fixed-Order problem can be solved in O(n log n) time. We show that the Any-Order problem is NP-hard for certain types of intervals and give an exact algorithm for the decision version. This algorithm is fixed-parameter tractable in the thickness K of the input. Our algorithm runs in O(n log n + n2K4K) time which can be improved to O(n log n + nK2K) time using a heuristic. We implemented our algorithm and evaluated it experimentally.


Sign in / Sign up

Export Citation Format

Share Document