strong evaporation
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zhicong Yin ◽  
Yu Wan ◽  
Yijia Zhang ◽  
Huijun Wang

Abstract Severe sandstorms reoccurred in the spring of 2021 after absence for more than 10 years in North China. The dust source area, located in Mongolia, suffered destructive cooling and warming in early and late winter which loosened the land. Lacked precipitation, excessive snow melt, and strong evaporation resulted in dry soil and exiguous spring vegetation. A super-strong Mongolian cyclone developed on the bare and loose ground, and easily blew and transported large amounts of sand particles into North China. Furthermore, the top-ranking anomalies of sea ice shift in the Barents and Kara Sea and the sea surface temperatures in east Pacific and northwest Atlantic were identified to induce the aforementioned tremendous climate anomalies in dust source area. Analyses, based on large-ensemble CMIP6, yield identical results as the reanalysis data. Thus, the climate variabilities at different latitudes and synoptic disturbances jointly facilitated the strongest spring sandstorm over the recent decade.


2021 ◽  
Vol 22 (2) ◽  
pp. 179-199
Author(s):  
C. S. Scherer

In this work we solve the nonlinear strong evaporation problem in rarefied gas dynamics. The analysis is based on the BGK model, with three dimensional velocity vector, derived from the Boltzmann equation. We present the complete development of a closed form solution for evaluating density, velocity, temperature perturbations and the heat flux of a gas. Numerical results are presented and discussed.  


2021 ◽  
pp. 1-50
Author(s):  
Xiaoquan Chen ◽  
Fengcun Xing ◽  
Shu Jiang ◽  
Yongchao Lu ◽  
Zhongrong Liu ◽  
...  

Using fresh cores samples, we determined the origin and formation process of Eocene lacustrine dolomites in the Tibetan Plateau through petrological, mineralogical, and geochemical analyses. Dolomitic rocks were collected from the upper member of Eocene Niubao Formation in the Lunpola Basin, and consist of dolomitic mudstone, argillaceous dolomite, dolomite-bearing mudstone and mud-bearing dolomite. These dolomites are dominated by aphanotopic and micro-crystalline dolomites, with minor amounts of euhedral or subhedral powder- and fine-crystalline dolomites. Carbon and oxygen stable isotopes, combined with ubiquitous gypsum in study area, indicates a semi-saline continental lake under strong evaporative conditions. The revealed relatively high temperature of dolomitization(33.8°C–119.1°C), combined with hydrothermal minerals such as cerous phosphate and barite, reflect the participation of dolomite from hot fluids. Moreover, the inferred dolomitization temperatures decrease gradually toward the centre of the lake basin, suggesting the resurgence of hydrothermal fluids along a fault zone on the lake margin. This proves that frequent thermal events occurred at the boundary fault of the Lunpola Basin margin during early Himalayan orogenesis. In addition, Jurassic carbonates interacting with hydrothermal fluids, as well as strong evaporation conditions, likely provided favourable conditions for the formation of primary lime sediments. A rich source of Mg2+ brought by volcanic ash, hydrothermal fluids, and the Jurassic carbonates then created conditions for dolomitization during the depositional period. Strong evaporation under a relatively hot climate enhanced penecontemporaneous dolomitization, thus forming dolomite. Tibetan Plateau was under arid to semi-arid climate conditions, and there was a widespread distribution of dolostones in western, central, and northern China during the Eocene period. The hydrothermal dolomites of the upper Niubao Formation testify for active hot springs, while lacustrine dolomite imply arid or semi-arid climates during the Eocene, in the early stages of Himalayan orogenesis.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Yongzhen Cheng ◽  
Yun Dong ◽  
Jingke Wu ◽  
Baoliang Li ◽  
Jihua Zhang

This research revealed the crack generation of the highway embankment from the water losing shrinkage of the wet black cotton soil (BCS), which is a type of soil with high swell-shrink potential. The road seepage meter was used to test the permeability of filling materials, which was used to replace BCS. The moisture content and embankment deflection of BCS foundation were measured after the rainy season. Based on the coupled consolidation theory for unsaturated soil, the change in additional tension stress of the embankment induced by water loss shrinkage of BCS was simulated by Abaqus. The results indicated that the rainfall seeped into the foundation through highly permeable refill materials to result in BCS expansion and decrease the embankment strength. After the rainy season, the additional tensile stress caused by water loss shrinkage of BCS induces cracking of highway embankment, and the maximum cracking depth often appears at the shoulder of highway. The deep and wide cracks are easy to appear in the low embankment constructed on a thick BCS foundation under strong evaporation.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Eigo Tochimoto ◽  
Mario Marcello Miglietta ◽  
Leonardo Bagaglini ◽  
Roberto Ingrosso ◽  
Hiroshi Niino

Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within a window of 10° × 10°. The difference in the cyclone tracks partially explains the seasonal variability in the distribution of tornadoes. The highest number of tornadoes occur south of the cyclone centers, mainly in the warm sector, while a few are observed along the cold front. Composite mesoscale parameters are examined to identify the environmental conditions associated with tornadoes in different seasons. Potential instability is favorable to tornado development in autumn. The highest convective available potential energy (CAPE) in this season is associated with relatively high-temperature and humidity at low-levels, mainly due to the strong evaporation over the warm Mediterranean Sea. Upper-level potential vorticity (PV) anomalies and the associated cold air reduce the static stability above the cyclone center, mainly in spring and winter. On average, the values of CAPE are lower than for US tornadoes and comparable with those occurring in Japan, while storm relative helicity (SREH) is comparable with US tornadoes and higher than Japanese tornadoes, indicating that the environmental conditions for Italian tornadoes have peculiar characteristics. Overall, the conditions emerging in this study are close to the high-shear, low-CAPE environments typical of cool-season tornadoes in the Southeastern US.


2020 ◽  
Vol 12 (14) ◽  
pp. 2242
Author(s):  
Bo-Young Ye ◽  
Eunsil Jung ◽  
Seungsook Shin ◽  
GyuWon Lee

The cloud measurements for two years from the vertical pointing Ka-band cloud radar at Boseong in Korea are used to analyze detailed cloud properties. The reflectivity of the cloud radar is calibrated with other vertical pointing radars compared with the two disdrometers. A simple threshold-based quality control method is applied to eliminate non-meteorological echoes (insects and noise) in conjunction with despeckling along the radial direction. Clouds are classified into five types: high (HC), middle (MC), low (LC) for non-precipitating clouds, and deep (RainDP) and shallow (RainSH) for precipitating clouds. The average cloud frequency was about 35.9% with the maximum frequency of 50% in June for the total two-year sampling period. The RainDP occurred most frequently (11.8%), followed by HC (9.3%), MC (7.4%), RainSH (4.4%), and LC (2.9%) out of the average occurrence of the total 35.9%. HC and RainDP were frequently observed in summer and autumn, while RainSH, LC, and MC were dominant in the winter due to the dominant cloud development by the air-sea interaction during the cold air outbreak. The HC showed a significant seasonal variation of the maximum height and the rapid growth in the layer above 7 km (about −15 °C) in summer and autumn. This rapid growth appears in HC, MC, LC, and RainDP and is linked with rapid increases in Doppler velocity and mass flux. Thus, this growth is originated from the dominant riming processes in addition to depositional growth and is supported by an updraft in the layer between 6 and 8 km. MC showed a single frequency peak around 6 km with rapid growth above and strong evaporation below. The Doppler velocity of MC rapidly increases above 8 km and is nearly constant below this height due to strong evaporation except in the summer. LC had a similar trend of reflectivity (rapid growth in the HC region and strong evaporation in the lower region) lacking high frequency in the MC region. Unlike LC, the RainDP had continuous growth toward the ground in the entire layer with rapid growth in the HC and MC regions. In addition, two modes (cloud and precipitation) appear on the ground in spring and fall with the vertical continuity of the high frequency in the precipitation mode. The precipitation growth was most efficient in RainSH in summer with a reflectivity gradient of about 20 dBZ km−1 and frequent updrafts larger than 1 m s−1 and was smaller in the MC and HC regions.


2020 ◽  
Author(s):  
Miguel Angel Marazuela ◽  
Carlos Ayora ◽  
Enric Vázquez Suñé ◽  
Sebastià Olivella Pastallé ◽  
Alejandro García Gil

<p>Salt flats (<em>salars</em>) are endorheic hydrogeological systems associated with arid to hyperarid climates. The brines of salt flats account the 80 % of the world’s reserves of Li highly demanded by modern industry. About 40 % of the worldwide Li is extracted from the brine that fills the pores and cavities of the Salar de Atacama. However, the origin of the extreme Li-enrichment of these brines is still unknown.</p><p>The thick accumulation of salts and brines in salt flats results from the groundwater discharge (phreatic evaporation) near the land surface for thousands to millions of years. The strong evaporation contributes the enrichment in major cations and anions as well as other rare elements (e.g. Li, B, Ba, Sr, Br, I and F) which are very attractive for mining exploitation. However, only evaporation cannot explain by itself the extreme concentrations of some of these elements and the strong decoupling between the most evaporated brines and the most Li-enriched brines in the Salar de Atacama. Several hypotheses have been proposed to explain the extreme Li-enrichment of the salt flat brines: (a) concentrated brines leaking down from salt flats located in the Andean Plateau, (b) leaching of hypothetical ancient salt flats buried among volcanic rocks, and (c) rising of hydrothermal brines from deep reservoirs through faults. However, none of them has been able probed neither validated by a numerical model till the date.</p><p>The objective of this work is to discuss the feasibility of the different hypotheses proposed until now to explain the formation of the world's largest lithium reserve. To achieve this objective, two sets of numerical simulations of a 2D vertical cross-section of the entire Salar de Atacama basin are carried out to define (1) the origin and evolution of a salt flat and how climate cycles can affect the location of the most Li-concentrated brines by evaporation and (2) the establishment of the hydro-thermo-haline circulation of a mature salt flat basin.</p>


2020 ◽  
Vol 493 (2) ◽  
pp. 2171-2177 ◽  
Author(s):  
M A De Vito ◽  
O G Benvenuto ◽  
J E Horvath

ABSTRACT We analyse the evolution of close binary systems containing a neutron star that lead to the formation of redback pulsars. Recently, there has been some debate on the origin of such systems and the formation mechanism of redbacks may still be considered as an open problem. We show that the operation of a strong evaporation mechanism, starting from the moment when the donor star becomes fully convective (or alternatively since the formation of the neutron star by accretion-induced collapse), produces systems with donor masses and orbital periods in the range corresponding to redbacks with donors appreciably smaller than their Roche lobes, i.e. they have low filling factors (lower than 0.75). Models of redback pulsars can be constructed assuming the occurrence of irradiation feedback. They have been shown to undergo cyclic mass transfer during the epoch at which they attain donor masses and orbital periods corresponding to redbacks, and stay in quasi-Roche lobe overflow conditions with high filling factors. We show that, if irradiation feedback occurs and radio ejection inhibits further accretion on to the neutron star after the first mass transfer cycle, the redback systems feature high filling factors. We suggest that the filling factor should be considered as a useful tool for discriminating among those redback formation mechanisms. We compare theoretical results with available observations and conclude that observations tend to favour models with high filling factors.


Sign in / Sign up

Export Citation Format

Share Document