Semi-analytical solution for the one-dimensional consolidation of multi-layered unsaturated soils with semi-permeable boundary

2021 ◽  
Vol 130 (1) ◽  
Author(s):  
Linzhong Li ◽  
Aifang Qin ◽  
Lianghua Jiang
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


An analytical solution of Riemann’s equations for the one-dimensional propagation of sound waves of finite amplitude in a gas obeying the adiabatic law p = k ρ γ is obtained for any value of the parameter γ. The solution is in the form of a complex integral involving an arbitrary function which is found from the initial conditions by solving a generalization of Abel’s integral equation. The results are applied to the problem of the expansion of a gas cloud into a vacuum.


2005 ◽  
Vol 128 (4) ◽  
pp. 397-404 ◽  
Author(s):  
A. D. Sommers ◽  
A. M. Jacobi

The fin efficiency of a high-thermal-conductivity substrate coated with a low-thermal-conductivity layer is considered, and an analytical solution is presented and compared to alternative approaches for calculating fin efficiency. This model is appropriate for frost formation on a round-tube-and-fin metallic heat exchanger, and the problem can be cast as conduction in a composite two-dimensional circular cylinder on a one-dimensional radial fin. The analytical solution gives rise to an eigenvalue problem with an unusual orthogonality condition. A one-term approximation to this new analytical solution provides fin efficiency calculations of engineering accuracy for a range of conditions, including most frosted-coated metal fins. The series solution and the one-term approximation are of sufficient generality to be useful for other cases of a low-thermal-conductivity coating on a high-thermal-conductivity substrate.


1999 ◽  
Vol 36 (5) ◽  
pp. 940-946 ◽  
Author(s):  
Ernesto Ausilio ◽  
Enrico Conte

This paper deals with the one-dimensional consolidation of unsaturated soils due to the application of external loads. A simple equation is derived that enables one to predict the rate of settlement of shallow foundations with time. This equation uses the constitutive relationships proposed by Fredlund and Morgenstern to define the volume change of unsaturated soils, and relates the settlement rate to the average degree of consolidation for both the water and air phases. A series of examples is shown to demonstrate the feasibility and usefulness of the derived equation. Key words: one-dimensional consolidation, unsaturated soil, degree of consolidation, rate of settlement.


2009 ◽  
Vol 02 (04) ◽  
pp. 405-417 ◽  
Author(s):  
CONRAD BERTRAND TABI ◽  
ALIDOU MOHAMADOU ◽  
TIMOLEON CREPIN KOFANE

We consider the one-dimensional helicoidal Peyrard–Bishop (PB) model of DNA dynamics. By means of a method based on the Jacobian elliptic functions, we obtain the exact analytical solution which describes the modulational instability and the propagation of a bright solitary wave on a continuous wave background. It is shown that these solutions depend on the modulational (or Benjamin-Feir) instability criterion. Numerical simulations of their propagation show these excitations to be long-lived and suggest that they are physically relevant for DNA.


2012 ◽  
Vol 157-158 ◽  
pp. 419-423
Author(s):  
Ya Peng Zhang ◽  
Feng Gao

Considering the rheological characteristics of soil, think the fractional maxwell with viscoelastic model can be described, the fractional maxwell model into integral form of saturated soft soil layer, the one dimensional compression, through the Laplace transform problems get instantaneous loading and single stage, the analytical solution of the loading conditions.


1983 ◽  
Vol 1 (5) ◽  
pp. 379-395
Author(s):  
Kumar Ramohalli

A simple study aimed at predicting the Thermochemical Response of honey comb sandwich panels is presented. The overall thermal conductivity coefficient for the panel is obtained through a consideration of the convective gas move ment within the cell spaces. The earlier correlations of Catton and Edwards are used. The analytical solution for the one-dimensional approximation is quoted from an earlier study.


Sign in / Sign up

Export Citation Format

Share Document