A mathematical structure for a theory of electromagnetic induction in the Earth in low latitude

1972 ◽  
Vol 101 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Ebun Oni
2021 ◽  
Author(s):  
Yasmina Bouderba ◽  
Ener Aganou ◽  
Abdenaceur Lemgharbi

<p>In this work we will show the behavior of the horizontal component H of the Earth Magnetic Field (EMF) along the seasons during the period of solar cycle 24 lasting from 2009 to 2019. By means of  continuous measurements of geomagnetic components (X, Y) of the EMF, we compute the horizontal component H at the Earth’s surface. The data are recorded with a time resolution of one minute at Tamanrasset observatory in Algeria at the geographical coordinates of 22.79° North and 5.53° East. These data are available from the INTERMAGNET network. We find that the variation in amplitude of the hourly average of H component at low latitude changes from a season to another and it is greater at the maximum solar activity than at the minimum solar activity.</p><p><strong>Keywords:</strong> Solar cycle 24, Season, Horizontal component H. </p>


2010 ◽  
Vol 6 (S274) ◽  
pp. 40-43
Author(s):  
I. F. Shaikhislamov ◽  
Yu. P. Zakharov ◽  
V. G. Posukh ◽  
E. L. Boyarintsev ◽  
A. V. Melekhov ◽  
...  

AbstractIn previous experiments by the authors a generation of intense field aligned current (FAC) system on Terrella poles was observed. In the present report a question of these currents origin in a low latitude boundary layer of magnetosphere is investigated. Experimental evidence of such a link was obtained by measurements of magnetic field generated by tangential sheared drag. Results suggest that compressional and Alfven waves are responsible for FAC generation. The study is most relevant to FAC generation in the Earth and Hermean magnetospheres following pressure jumps in Solar Wind.


2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Weerachai Siripunvaraporn ◽  
Paul A. Bedrosian ◽  
Yuguo Li ◽  
Prasanta K. Patro ◽  
Klaus Spitzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document