low latitude boundary layer
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 8)

H-INDEX

27
(FIVE YEARS 0)

Author(s):  
E.-H. Kim ◽  
J. R. Johnson ◽  
K. Nykyri

The Kelvin–Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfvén velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfvén Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfvén wave. There are remarkable differences between the primary and the secondary KH waves, including wave frequency, the growth rate, and the ratio between the transverse and compressional components. The secondary KH wave energy is concentrated near the shear Alfvén wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at a lower Mach number. Because the transverse component of the secondary KH waves is stronger than that of the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.


2021 ◽  
Author(s):  
Steve Milan ◽  
Jenny Carter ◽  
Gemma Bower ◽  
Suzie Imber ◽  
Larry Paxton ◽  
...  

<p>We propose a mechanism for the formation of the horse-collar auroral configuration common during periods of strongly northwards interplanetary magnetic field, invoking the action of dual-lobe reconnection (DLR).  Auroral observations are provided by the Imager for Magnetopause-to-Auroras Global Exploration (IMAGE) satellite and spacecraft of the Defense Meteorological Satellite Program (DMSP).  We also use ionospheric flow measurements from DMSP and polar maps of field-aligned currents (FACs) derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE).  Sunward convection is observed within the dark polar cap, with antisunwards flows within the horse-collar auroral region, together with the NBZ FAC distribution expected to be associated with DLR.  We suggest that newly-closed flux is transported antisunwards and to dawn and dusk within the reverse lobe cell convection pattern associated with DLR, causing the polar cap to acquire a teardrop shape and weak auroras to form at high latitudes.  Horse-collar auroras are a common feature of the quiet magnetosphere, and this model provides a first understanding of their formation, resolving several outstanding questions regarding the nature of DLR and the magnetospheric structure and dynamics during northwards IMF.  The model can also provide insights into the trapping of solar wind plasma by the magnetosphere and the formation of a low-latitude boundary layer and cold, dense plasma sheet.  We speculate that prolonged DLR could lead to a fully closed magnetosphere, with the formation of horse-collar auroras being an intermediate step.</p>


2021 ◽  
pp. 353-435
Author(s):  
Wayne Keith ◽  
Walter Heikkila

2020 ◽  
Vol 38 (1) ◽  
pp. 263-273
Author(s):  
Guang Qing Yan ◽  
George K. Parks ◽  
Chun Lin Cai ◽  
Tao Chen ◽  
James P. McFadden ◽  
...  

Abstract. A train of likely Kelvin–Helmholtz (K–H) vortices with plasma transport across the magnetopause has been observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) at the duskside of the magnetopause. This unique event occurs when the interplanetary magnetic field (IMF) abruptly turns northward, which is the immediate change to facilitate the K–H instability. Two THEMIS spacecraft, TH-A and TH-E, separated by 3 RE, periodically encountered the duskside magnetopause and the low-latitude boundary layer (LLBL) with a period of 2 min and tailward propagation of 212 km s−1. Despite surface waves also explaining some of the observations, the rotations in the bulk velocity observation, a distorted magnetopause with plasma parameter fluctuations and the magnetic field perturbations, as well as a high-velocity low-density feature indicate the possible formation of rolled-up K–H vortices at the duskside of the magnetopause. The coexistence of magnetosheath ions with magnetospheric ions and enhanced energy flux of hot electrons is identified in the K–H vortices. These transport regions appear more periodic at the upstream spacecraft and more dispersive at the downstream location, indicating significant transport can occur and evolve during the tailward propagation of the K–H waves. There is still much work to do to fully understand the Kelvin–Helmholtz mechanism. The observations of the direct response to the northward turning of the IMF, the possible evidence of plasma transport within the vortices, involving both ion and electron fluxes, can provide additional clues as to the K–H mechanism.


2019 ◽  
Author(s):  
Guang Qing Yan ◽  
George K. Parks ◽  
Chun Lin Cai ◽  
Tao Chen ◽  
James P. McFadden ◽  
...  

Abstract. A train of Kelvin–Helmholtz (K–H) vortices with plasma transport across the magnetopause has been observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) when the interplanetary magnetic field (IMF) abruptly turns northward. This unique event occurred without pre-existing denser boundary layer to facilitate the instability. Two THEMIS spacecraft, TH-A and TH-E, separated by 3 Re, periodically encountered the duskside magnetopause and the low-latitude boundary layer (LLBL) with a period of 2 minutes and tailward propagation of 194 km/s. There was no high-velocity low-density feature, but the rotations in the bulk velocity observation, distorted magnetopause with plasma parameter fluctuations and the magnetic field line stretching, indicate the formation of rolled-up K–H vortices at the duskside magnetopause. A mixture of magnetosheath ions with magnetospheric ions and enhanced energy flux of hot electrons is identified in the K–H vortices. This mixture region appears more periodic at the upstream spacecraft and more dispersive at the downstream location, indicating a significant transport can occur and evolve during the tailward propagation of the K–H waves. There is still much work to fully understand the Kelvin–Helmholtz mechanism. The observations of direct response to the northward turning of the IMF, the unambiguous plasma transport within the vortices, involving both ion and electron fluxes can provide additional clues to the K–H mechanism.


2019 ◽  
Vol 46 (11) ◽  
pp. 5746-5753
Author(s):  
X.‐C. Dong ◽  
M. W. Dunlop ◽  
K. J. Trattner ◽  
T.‐Y. Wang ◽  
Z. Y. Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document