Study of the dynamic characteristics of thin-walled structures with attached weights

1983 ◽  
Vol 19 (2) ◽  
pp. 147-149
Author(s):  
A. A. Malinin
2019 ◽  
Vol 2 (1) ◽  
pp. 38-52
Author(s):  
Adam Szeleziński ◽  
Lech Murawski ◽  
Adam Muc

Abstract Among structural health monitoring (SHM) methods of thin-walled structures, a vibrodiagnostic method is one of the most promising. The accelerometer recorded responses provide diagnostic information that requires mathematical processing to extract the essential dynamic characteristics. The authors have been looking for new parameters - diagnostic benchmarks which can be applied to non-destructive, automatic testing of thin-walled marine structures (especially their welded joints) like ship hulls. All characteristics have been based on recorded data generated during the vibration tests of welded joints with and without failures. For this purpose, the authors proposed method based on: FFT windowing analysis, benchmark with using 2D or 3D time – frequency dynamic characteristics and the determination of damping decrement in function of time. The work presents the algorithm and exemplary results obtained from the application of proposed method to several selected sample plates with different type of welds.


2018 ◽  
Vol 762 (8) ◽  
pp. 36-39 ◽  
Author(s):  
B.G. BULATOV ◽  
◽  
R.I. SHIGAPOV ◽  
M.A. IVLEV ◽  
I.V. NEDOSEKO ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


2021 ◽  
Vol 67 (4) ◽  
pp. 1229-1242
Author(s):  
Shuhao Wang ◽  
Lida Zhu ◽  
Yichao Dun ◽  
Zhichao Yang ◽  
Jerry Ying Hsi Fuh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document