direct energy
Recently Published Documents


TOTAL DOCUMENTS

829
(FIVE YEARS 285)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Vol 3 (1) ◽  
pp. 15-26
Author(s):  
Argyris Tilemachou ◽  
Matthew Zervos ◽  
Andreas Othonos ◽  
Theodoros Pavloudis ◽  
Joseph Kioseoglou

Cu3N with a cubic crystal structure is obtained in this paper by the sputtering of Cu under N2 followed by annealing under NH3: H2 at 400 °C, after which it was doped with iodine at room temperature resulting into p-type Cu3N with hole densities between 1016 and 1017 cm−3. The Cu3N exhibited distinct maxima in differential transmission at ~2.01 eV and 1.87 eV as shown by ultrafast pump-probe spectroscopy, corresponding to the M and R direct energy band gaps in excellent agreement with density functional theory calculations, suggesting that the band gap is clean and free of mid-gap states. The Cu3N was gradually converted into optically transparent γ-CuI that had a hole density of 4 × 1017 cm−3, mobility of 12 cm2/Vs and room temperature photoluminescence at 3.1 eV corresponding to its direct energy band gap. We describe the fabrication and properties of γ-CuI/TiO2/Cu3N and γ-CuI/Cu3N p-n heterojunctions that exhibited rectifying current-voltage characteristics, but no photogenerated current attributed to indirect recombination via shallow states in Cu3N and/or deep states in the γ-CuI consistent with the short (ps) lifetimes of the photoexcited electrons-holes determined from transient absorption–transmission spectroscopy.


Abstract We provide a first-principles analysis of the energy fluxes in the oceanic internal wavefield. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean which is known as the Finescale Parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber – frequency (m – w) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the Finescale-Parameterization formula in functional form and in magnitude. These energy transfers are composed of a ‘local’ and a ‘scale-separated’ contributions; while the former is quantified numerically, the latter is dominated by the Induced Diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all non-zero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed ‘no-flux’ solutions are reinstated to the status of ‘constant-downscale-flux’ solutions. This is consequential for an understanding of energy fluxes, sources and sinks that fits in the observational paradigm of the Finescale Parameterization, solving at once two long-standing paradoxes that had earned the name of ‘Oceanic Ultraviolet Catastrophe’.


2021 ◽  
Author(s):  
Tianhao Jia ◽  
Bin Zou ◽  
Wenbo Liu ◽  
Ting Lei ◽  
Hongjian Ding

Abstract In this study, Inconel718 specimens with good mechanical properties were prepared by direct energy deposit (DED) with different laser processing parameters. The mechanical properties of Inconel718 samples fabricated by laser direct energy deposit method without heat treatment were measured. The fractures and metallographic structures of prepared Inconel718 were observed, and the mechanism of the effect of diverse machining parameters on mechanical properties of Inconel718 was analyzed from the micro level. The results showed the microstructures of depositions of Inconel 718 specimens prepared by DED were compact with fine grains and anisotropic microstructures, where macroscopic defects were barely seen. The mechanical properties and microstructures of Inconel718 were influenced by processing parameters, among which the forming angle and laser power had the most remarkable effect. According to the experimental data, it could be observed that the Inconel718 specimens prepared by DED had the best performance under the circumstance of 1400W laser power, 1.0mm layer thickness, 600mm/min scanning speed, 1.3mm hatch spacing, and 90° forming angle, whose ultimate tensile strength (UTS) and macro hardness were 1016.10MPa and 36.2HRC respectively. The UTS of Inconel 718 manufactured by DED was close to that of Inconel718 prepared by traditional forging, and even it had higher hardness.


2021 ◽  
Author(s):  
Enrique Ariza Galván ◽  
Isabel Montealegre Meléndez ◽  
Cristina Arévalo Mora ◽  
Eva María Pérez Soriano ◽  
Erich Neubauer ◽  
...  

Plasma metal deposition (PMD®) is a promising and economical direct energy deposition technique for metal additive manufacturing based on plasma as an energy source. This process allows the use of powder, wire, or both combined as feedstock material to create near-net-shape large size components (i.e., >1 m) with high-deposition rates (i.e., 10 kg/h). Among the already PMD® processed materials stand out high-temperature resistance nickel-based alloys, diverse steels and stainless steels commonly used in the industry, titanium alloys for the aerospace field, and lightweight alloys. Furthermore, the use of powder as feedstock also allows to produce metal matrix composites reinforced with a wide range of materials. This chapter presents the characteristics of the PMD® technology, the welding parameters affecting additive manufacturing, examples of different fabricated materials, as well as the challenges and developments of the rising PMD® technology.


Sign in / Sign up

Export Citation Format

Share Document