Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations

1993 ◽  
Vol 78 (2) ◽  
pp. 365-391 ◽  
Author(s):  
Z. Denkowski ◽  
S. Mortola
Author(s):  
Mohammad A. Kazemi

AbstractIn this paper a class of optimal control problems with distributed parameters is considered. The governing equations are nonlinear first order partial differential equations that arise in the study of heterogeneous reactors and control of chemical processes. The main focus of the present paper is the mathematical theory underlying the algorithm. A conditional gradient method is used to devise an algorithm for solving such optimal control problems. A formula for the Fréchet derivative of the objective function is obtained, and its properties are studied. A necessary condition for optimality in terms of the Fréchet derivative is presented, and then it is shown that any accumulation point of the sequence of admissible controls generated by the algorithm satisfies this necessary condition for optimality.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 332 ◽  
Author(s):  
Hamza Medekhel ◽  
Salah Boulaaras ◽  
Khaled Zennir ◽  
Ali Allahem

This paper deals with the existence of positively solution and its asymptotic behavior for parabolic system of ( p ( x ) , q ( x ) ) -Laplacian system of partial differential equations using a sub and super solution according to some given boundary conditions, Our result is an extension of Boulaaras’s works which studied the stationary case, this idea is new for evolutionary case of this kind of problem.


Risks ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 136
Author(s):  
Stefan Kremsner ◽  
Alexander Steinicke ◽  
Michaela Szölgyenyi

In insurance mathematics, optimal control problems over an infinite time horizon arise when computing risk measures. An example of such a risk measure is the expected discounted future dividend payments. In models which take multiple economic factors into account, this problem is high-dimensional. The solutions to such control problems correspond to solutions of deterministic semilinear (degenerate) elliptic partial differential equations. In the present paper we propose a novel deep neural network algorithm for solving such partial differential equations in high dimensions in order to be able to compute the proposed risk measure in a complex high-dimensional economic environment. The method is based on the correspondence of elliptic partial differential equations to backward stochastic differential equations with unbounded random terminal time. In particular, backward stochastic differential equations—which can be identified with solutions of elliptic partial differential equations—are approximated by means of deep neural networks.


Sign in / Sign up

Export Citation Format

Share Document