Exact order of convergence of the secant method

1993 ◽  
Vol 78 (3) ◽  
pp. 541-551 ◽  
Author(s):  
M. Raydan
2000 ◽  
Vol 99 (3) ◽  
pp. 1234-1243
Author(s):  
A. Basalykas ◽  
O. Yanushkevichiene

2018 ◽  
Vol 14 (1) ◽  
pp. 179-187
Author(s):  
Jivandhar Jnawali ◽  
Chet Raj Bhatta

 The main purpose of this paper is to derive two higher order iterative methods for solving nonlinear equations as variants of Mir, Ayub and Rafiq method. These methods are free from higher order derivatives. We obtain these methods by amalgamating Mir, Ayub and Rafiq method with standard secant method and modified secant method given by Amat and Busquier. The order of convergence of new variants are four and six. Also, numerical examples are given to compare the performance of newly introduced methods with the similar existing methods. 2010 AMS Subject Classification: 65H05 Journal of the Institute of Engineering, 2018, 14(1): 179-187


2020 ◽  
Vol 12 (6) ◽  
pp. 50
Author(s):  
Christian Vanhille

We propose an iterative method to evaluate the roots of nonlinear equations. This Secant-based technique approximates the derivatives of the function numerically through a constant discretization step h disassociated from the iterative progression. The algorithm is developed, implemented, and tested. Its order of convergence is found to be h-dependent. The results obtained corroborate the theoretical deductions and evidence its excellent behavior. For infinitesimal h-values, the algorithm accelerates the convergence of the Secant method to order 2 (the one of the Newton-Raphson method) with no need for analytic expression of derivatives (the advantage of the Secant method).


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 47
Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz ◽  
U. Iturrarán-Viveros ◽  
R. Caballero-Cruz

In the following paper, we present a way to accelerate the speed of convergence of the fractional Newton–Raphson (F N–R) method, which seems to have an order of convergence at least linearly for the case in which the order α of the derivative is different from one. A simplified way of constructing the Riemann–Liouville (R–L) fractional operators, fractional integral and fractional derivative is presented along with examples of its application on different functions. Furthermore, an introduction to Aitken’s method is made and it is explained why it has the ability to accelerate the convergence of the iterative methods, in order to finally present the results that were obtained when implementing Aitken’s method in the F N–R method, where it is shown that F N–R with Aitken’s method converges faster than the simple F N–R.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2021 ◽  
pp. 1-10
Author(s):  
Nejmeddine Chorfi

The aim of this work is to highlight that the adaptivity of the time step when combined with the adaptivity of the spectral mesh is optimal for a semi-linear parabolic equation discretized by an implicit Euler scheme in time and spectral elements method in space. The numerical results confirm the optimality of the order of convergence. The later is similar to the order of the error indicators.


Sign in / Sign up

Export Citation Format

Share Document