analytic expression
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 70)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Dominic M. Rouse ◽  
Erik M. Gauger ◽  
Brendon W. Lovett

2021 ◽  
Author(s):  
William Lee ◽  
Paul Martin ◽  
Ann Smith ◽  
Giancarlo Antonucci ◽  
Georgia Brennan ◽  
...  

Low Earth Orbit is becoming crowded with satellites. Updating estimates of collision probabilities is important as new deployments are authorised but is difficult because only limited information is given. This report investigates developing analytic estimates of collision probabilities. A survey of approaches reported in the literature is carried out. A collision involving a satellite from the Iridium cluster is reviewed. A simple analytic expression for the collision probability between two satellites is derived using the smallness of several dimensionless ratios appearing in the problem. Single collision probabilities are then extended to orbital planes populated by n satellites with the aim of finding the optimal point at which to traverse such an orbit. This report demonstrates that analytic estimates relevant to the problem can be made. Further work should focus on: making these estimates rigorous by using a formal asymptotic approach, considering multiple orbital planes and introducing time dependence


2021 ◽  
Vol 11 (24) ◽  
pp. 11612
Author(s):  
Je-An Kim ◽  
Joon-Ho Lee

In this paper, performance analysis of the cross-eye jamming effect under mechanical defects is dealt with. By using a numerical analysis-based approach, the performance analysis method proposed in this paper is closer to the not approximated empirical mean square difference (MSD) than the first-order Taylor approximation-based performance analysis method and the second-order Taylor approximation-based performance analysis method proposed in previous studies. In other words, the effects of amplitude ratio perturbation and phase difference perturbation on performance degradation are quantitatively analyzed. Note that the numerical integration is adopted to derive an analytic expression of the MSD.


Author(s):  
Wouter Tierens ◽  
James R Myra ◽  
Roberto Bilato ◽  
Laurent Colas

Abstract Perkins et al. PRL 2012 [1] reported unexpected power losses during High Harmonic Fast Wave (HHFW) heating and current drive in NSTX. Recently, Tierens et al [2] proposed that these losses may be attributable to surface waves on field-aligned plasma filaments, which carry power along the filaments, to be lost at the endpoints where the filaments intersect the limiters. In this work, we show that there is indeed a resonant loss mechanism associated with the excitation of these surface waves, and derive an analytic expression for the power lost to surface wave modes at each filament.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Tapan Sabuwala ◽  
Pinaki Chakraborty ◽  
Troy Shinbrot

AbstractRapidly spinning and loosely aggregated asteroids appear to take on diamond-shaped profiles, with elevated poles as well as equators. The evolutionary processes that form these characteristic shapes remain a matter of debate. In this paper, we propose a novel model, based on debris accretion, to explain these diamond-shaped profiles. We derive an analytic expression for the shapes of such rapidly spinning rubble piles based on the principle that as rubble is deposited it assumes a critical angle of repose. We show that this expression correctly reproduces diamond shaped profiles. We also conduct granular simulations of debris deposition and show that simulated shapes are in striking accord with both observations and analytical results. Our results suggest that non-uniform debris accumulation, which is overlooked in current models, may play a cardinal role in the formation of diamond-shaped asteroids.


2021 ◽  
Vol 12 ◽  
pp. 118
Author(s):  
M. Grypeos ◽  
C. G. Koutroulos ◽  
K. J. Oyewumi ◽  
Th. Petridou

The quantum mechanical hypervirial theorems (HVT) technique is used to treat the so-called "uncertainty" relation for quite a wide class of central potential wells, including the (reduced) Poeschl-Teller and the Gaussian one.It is shown that this technique is quite suitable in deriving an approximate analytic expression in the form of a truncated power series expansion for the dimensionless product $P_{nl}\equiv <r^2>_{nl}<p^2>_{nl}/\hbar^2$, for every (deeply) bound state of a particle moving non-relativistically in the well, provided that a (dimensionless) parameter s is sufficiently small. Numerical results are also given and discussed.


2021 ◽  
Vol 21 (4) ◽  
pp. 1003
Author(s):  
Redi Kristian Pingak ◽  
Atika Ahab ◽  
Utama Alan Deta

This study aims to use hydrogenic orbitals within an analytic and numeric parameter-free truncated-matrix method to solve the projected Schrödinger equation of some Helium-like ions (3 ≤ Z ≤ 10). We also derived a new analytical expression of the ion ground state energies, which was simple and accurate and improved the accuracy of the analytic calculation, numerically using Mathematica. The standard matrix method was applied, where the wave function of the ions was expanded in a finite number of eigenvectors comprising hydrogenic orbitals. The Hamiltonian of the systems was calculated using the wave function and diagonalized to obtain their ground state energies. The results showed that a simple analytic expression of the ground state energies of He-like ions was successfully derived. Although the analytic expression was derived without involving any variational parameter, it was reasonably accurate with a 0.12% error for Ne8+ ion. From this method, the accuracy of the analytic energies was also numerically improved to 0.10% error for Ne8+ ion. The results clearly showed that the energies obtained using this method were more accurate than the hydrogenic perturbation theory and the uncertainty principle-variational approach. In addition, for Z > 4, our results were more accurate than those from the geometrical model.


2021 ◽  
Vol 103 (24) ◽  
Author(s):  
István Magashegyi ◽  
Katalin Oltyán ◽  
Péter Földi

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Peter J. Catto

Standard quasilinear descriptions are based on the constant magnetic field form of the quasilinear operator so improperly treat the trapped electron modifications associated with tokamak geometry. Moreover, successive poloidal transits of the Landau resonance during lower hybrid current drive in a tokamak are well correlated, and these geometrical details must be properly retained to account for the presence of trapped electrons that do not contribute to the driven current. The recently derived quasilinear operator in tokamak geometry accounts for these features and finds that the quasilinear diffusivity is proportional to a delta function with a transit or bounce averaged argument (rather than a local Landau resonance condition). The new quasilinear operator is combined with the Cordey (Nucl. Fusion, vol. 16, 1976, pp. 499–507) eigenfunctions to properly derive a rather simple and compact analytic expression for the trapped electron modifications to the driven lower hybrid current and the efficiency of the current drive.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Tanja Schoger ◽  
Gert-Ludwig Ingold

We derive an exact analytic expression for the high-temperature limit of the Casimir interaction between two Drude spheres of arbitrary radii. Specifically, we determine the Casimir free energy by using the scattering approach in the plane-wave basis. Within a round-trip expansion, we are led to consider the combinatorics of certain partitions of the round trips. The relation between the Casimir free energy and the capacitance matrix of two spheres is discussed. Previously known results for the special cases of a sphere-plane geometry as well as two spheres of equal radii are recovered. An asymptotic expansion for small distances between the two spheres is determined and analytical expressions for the coefficients are given.


Sign in / Sign up

Export Citation Format

Share Document