On the zeros of partial sums of series of functions

1969 ◽  
Vol 10 (2) ◽  
pp. 296-306
Author(s):  
S. V. Fomenko
2011 ◽  
Vol 63 (5) ◽  
pp. 1025-1037
Author(s):  
Raphäel Clouâtre

Abstract Every holomorphic function on a compact subset of a Riemann surface can be uniformly approximated by partial sums of a given series of functions. Those functions behave locally like the classical fundamental solutions of the Cauchy–Riemann operator in the plane.


2014 ◽  
Vol 64 (6) ◽  
Author(s):  
Ushangi Goginava

AbstractThe sufficient and necessary conditions on the sequence Λ = {λn} are found for the uniformly convergence of Cesàro means of negative order of cubic partial sums of double Walsh-Fourier series of functions of bounded partial Λ-variation.


Author(s):  
I. L. BLOSHANSKII

Let E be an arbitrary set of positive measure in the N-dimensional cube TN=(-π,π)N⊂ℝN, N≥1, and let f(x)=0 on E. Let [Formula: see text] be some linear subspace of L1(TN). We investigate the behavior of rectangular partial sums of multiple trigonometric Fourier series of a function f on the sets E and TN\E depending on smoothness of the function f (i.e. of the space [Formula: see text]), and, as well, of structural and geometric characteristics of the set E (SGC(E)). Thus, we are describing pairs [Formula: see text]. It is convenient to formulate and investigate the posed question in terms of generalized localization almost everywhere (GL) and weak generalized localization almost everywhere (WGL). This means that for the multiple Fourier series of a function f, that equals zero on the set E, convergence almost everywhere is investigated on the set E (GL), or on some of its subsets E1⊂E, of positive measure (WGL).


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


2019 ◽  
Vol 6 (4) ◽  
pp. 1-30
Author(s):  
Guy L. Steele Jr. ◽  
Jean-Baptiste Tristan

Author(s):  
Edgar Solomonik ◽  
James Demmel

AbstractIn matrix-vector multiplication, matrix symmetry does not permit a straightforward reduction in computational cost. More generally, in contractions of symmetric tensors, the symmetries are not preserved in the usual algebraic form of contraction algorithms. We introduce an algorithm that reduces the bilinear complexity (number of computed elementwise products) for most types of symmetric tensor contractions. In particular, it lowers the bilinear complexity of symmetrized contractions of symmetric tensors of order {s+v} and {v+t} by a factor of {\frac{(s+t+v)!}{s!t!v!}} to leading order. The algorithm computes a symmetric tensor of bilinear products, then subtracts unwanted parts of its partial sums. Special cases of this algorithm provide improvements to the bilinear complexity of the multiplication of a symmetric matrix and a vector, the symmetrized vector outer product, and the symmetrized product of symmetric matrices. While the algorithm requires more additions for each elementwise product, the total number of operations is in some cases less than classical algorithms, for tensors of any size. We provide a round-off error analysis of the algorithm and demonstrate that the error is not too large in practice. Finally, we provide an optimized implementation for one variant of the symmetry-preserving algorithm, which achieves speedups of up to 4.58\times for a particular tensor contraction, relative to a classical approach that casts the problem as a matrix-matrix multiplication.


2020 ◽  
Vol 23 (4) ◽  
pp. 980-995
Author(s):  
Alberto Cabada ◽  
Nikolay Dimitrov

AbstractIn this paper, we introduce a two-point boundary value problem for a finite fractional difference equation with a perturbation term. By applying spectral theory, an associated Green’s function is constructed as a series of functions and some of its properties are obtained. Under suitable conditions on the nonlinear part of the equation, some existence and uniqueness results are deduced.


Sign in / Sign up

Export Citation Format

Share Document