dimensional cube
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3299
Author(s):  
Dostonjon Barotov ◽  
Aleksey Osipov ◽  
Sergey Korchagin ◽  
Ekaterina Pleshakova ◽  
Dilshod Muzafarov ◽  
...  

: In recent years, various methods and directions for solving a system of Boolean algebraic equations have been invented, and now they are being very actively investigated. One of these directions is the method of transforming a system of Boolean algebraic equations, given over a ring of Boolean polynomials, into systems of equations over a field of real numbers, and various optimization methods can be applied to these systems. In this paper, we propose a new transformation method for Solving Systems of Boolean Algebraic Equations (SBAE). The essence of the proposed method is that firstly, SBAE written with logical operations are transformed (approximated) in a system of harmonic-polynomial equations in the unit n-dimensional cube Kn with the usual operations of addition and multiplication of numbers. Secondly, a transformed (approximated) system in Kn is solved by using the optimization method. We substantiated the correctness and the right to exist of the proposed method with reliable evidence. Based on this work, plans for further research to improve the proposed method are outlined.


10.37236/9848 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Hoa T. Bui ◽  
Guillermo Pineda-Villavicencio ◽  
Julien Ugon

The paper is concerned with the linkedness of the graphs of cubical polytopes. A graph with at least $2k$ vertices is $k$-linked if, for every set of $k$ disjoint pairs of vertices, there are $k$ vertex-disjoint paths joining the vertices in the pairs. We say that a polytope is $k$-linked if its graph is $k$-linked. We establish that the $d$-dimensional cube is $\lfloor (d+1)/2 \rfloor$-linked, for every $d\ne 3$; this is the maximum possible linkedness of a $d$-polytope. This result implies that, for every $d\geqslant 1$, a cubical $d$-polytope is  $\lfloor d/2\rfloor$-linked, which answers a question of Wotzlaw (Incidence graphs and unneighborly polytopes, Ph.D. thesis, 2009).  Finally, we introduce the notion of strong linkedness, which is slightly stronger than that of linkedness. A graph $G$ is strongly $k$-linked if it has at least $2k+1$ vertices and, for  every vertex $v$ of $G$, the subgraph $G-v$ is $k$-linked. We show that cubical 4-polytopes are strongly $2$-linked and that, for each $d\geqslant 1$,  $d$-dimensional cubes  are strongly $\lfloor d/2\rfloor$-linked. 


Author(s):  
Alina Vdovina

The most common geometric interpretation of the Yang–Baxter equation is by braids, knots and relevant Reidemeister moves. So far, cubes were used for connections with the third Reidemeister move only. We will show that there are higher-dimensional cube complexes solving the [Formula: see text]-state Yang–Baxter equation for arbitrarily large [Formula: see text]. More precisely, we introduce explicit constructions of cube complexes covered by products of [Formula: see text] trees and show that these cube complexes lead to new solutions of the Yang–Baxter equations.


Author(s):  
Raghvendra Rohit ◽  
Kai Hu ◽  
Sumanta Sarkar ◽  
Siwei Sun

Being one of the winning algorithms of the CAESAR competition and currently a second round candidate of the NIST lightweight cryptography standardization project, the authenticated encryption scheme Ascon (designed by Dobraunig, Eichlseder, Mendel, and Schläffer) has withstood extensive self and third-party cryptanalysis. The best known attack on Ascon could only penetrate up to 7 (out of 12) rounds due to Li et al. (ToSC Vol I, 2017). However, it violates the data limit of 264 blocks per key specified by the designers. Moreover, the best known distinguishers of Ascon in the AEAD context reach only 6 rounds. To fill these gaps, we revisit the security of 7-round Ascon in the nonce-respecting setting without violating the data limit as specified in the design. First, we introduce a new superpoly-recovery technique named as partial polynomial multiplication for which computations take place between the so-called degree-d homogeneous parts of the involved Boolean functions for a 2d-dimensional cube. We apply this method to 7-round Ascon and present several key recovery attacks. Our best attack can recover the 128-bit secret key with a time complexity of about 2123 7-round Ascon permutations and requires 264 data and 2101 bits memory. Also, based on division properties, we identify several 60 dimensional cubes whose superpolies are constant zero after 7 rounds. We further improve the cube distinguishers for 4, 5 and 6 rounds. Although our results are far from threatening the security of full 12-round Ascon, they provide new insights in the security analysis of Ascon.


2021 ◽  
Vol 147 (2) ◽  
pp. 393-429
Author(s):  
Robert Nasdala ◽  
Daniel Potts

AbstractWe combine a periodization strategy for weighted $$L_{2}$$ L 2 -integrands with efficient approximation methods in order to approximate multivariate non-periodic functions on the high-dimensional cube $$\left[ -\frac{1}{2},\frac{1}{2}\right] ^{d}$$ - 1 2 , 1 2 d . Our concept allows to determine conditions on the d-variate torus-to-cube transformations $${\psi :\left[ -\frac{1}{2},\frac{1}{2}\right] ^{d}\rightarrow \left[ -\frac{1}{2},\frac{1}{2}\right] ^{d}}$$ ψ : - 1 2 , 1 2 d → - 1 2 , 1 2 d such that a non-periodic function is transformed into a smooth function in the Sobolev space $${\mathcal {H}}^{m}(\mathbb {T}^{d})$$ H m ( T d ) when applying $$\psi $$ ψ . We adapt $$L_{\infty }(\mathbb {T}^{d})$$ L ∞ ( T d ) - and $$L_{2}(\mathbb {T}^{d})$$ L 2 ( T d ) -approximation error estimates for single rank-1 lattice approximation methods and adjust algorithms for the fast evaluation and fast reconstruction of multivariate trigonometric polynomials on the torus in order to apply these methods to the non-periodic setting. We illustrate the theoretical findings by means of numerical tests in up to $$d=5$$ d = 5 dimensions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Matthew Kahle ◽  
Elliot Paquette ◽  
Érika Roldán

Abstract We study a natural model of a random $2$ -dimensional cubical complex which is a subcomplex of an n-dimensional cube, and where every possible square $2$ -face is included independently with probability p. Our main result exhibits a sharp threshold $p=1/2$ for homology vanishing as $n \to \infty $ . This is a $2$ -dimensional analogue of the Burtin and Erdoős–Spencer theorems characterising the connectivity threshold for random graphs on the $1$ -skeleton of the n-dimensional cube. Our main result can also be seen as a cubical counterpart to the Linial–Meshulam theorem for random $2$ -dimensional simplicial complexes. However, the models exhibit strikingly different behaviours. We show that if $p> 1 - \sqrt {1/2} \approx 0.2929$ , then with high probability the fundamental group is a free group with one generator for every maximal $1$ -dimensional face. As a corollary, homology vanishing and simple connectivity have the same threshold, even in the strong ‘hitting time’ sense. This is in contrast with the simplicial case, where the thresholds are far apart. The proof depends on an iterative algorithm for contracting cycles – we show that with high probability, the algorithm rapidly and dramatically simplifies the fundamental group, converging after only a few steps.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Grigory Ivanov ◽  
Igor Tsiutsiurupa

Abstract We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1] n . We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝ n onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1] n , n ≥ 2.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1281
Author(s):  
Sergey Sidorov ◽  
Nikolai Zolotykh

Stochastic separation theorems play important roles in high-dimensional data analysis and machine learning. It turns out that in high dimensional space, any point of a random set of points can be separated from other points by a hyperplane with high probability, even if the number of points is exponential in terms of dimensions. This and similar facts can be used for constructing correctors for artificial intelligent systems, for determining the intrinsic dimensionality of data and for explaining various natural intelligence phenomena. In this paper, we refine the estimations for the number of points and for the probability in stochastic separation theorems, thereby strengthening some results obtained earlier. We propose the boundaries for linear and Fisher separability, when the points are drawn randomly, independently and uniformly from a d-dimensional spherical layer and from the cube. These results allow us to better outline the applicability limits of the stochastic separation theorems in applications.


2020 ◽  
Author(s):  
Noga Alon ◽  
Kai Zheng

Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $f(x)\not=f(x+e_i)$, where $e_i$ is the $i$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of disjoint subsets $I$ of $\{1,..,n\}$ such that flipping the coordinates indexed by $I$ changes the value of $f(x)$, and the _block sensitivity_ of $f$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $x$, the block sensitivity of $f$ is at least the sensitivity of $f$. The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $k\ge 2$ and define a Boolean function $f:\{0,1\}^{2k^2}\to\{0,1\}$ as follows: the coordinates of $x\in\{0,1\}^{2k^2}$ are split into $k$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $f$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two. The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $n$-dimensional cube $\{0,1\}^n$ induces a subgraph that contains a vertex with degree at least $\sqrt{n}$. The present article extends this result as follows: every Cayley graph with the vertex set $\{0,1\}^n$ and any generating set of size $d$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $\sqrt{d}$. In particular, when the generating set consists of the $n$ unit vectors, the Cayley graph is the $n$-dimensional hypercube.


2020 ◽  
Vol 68 ◽  
pp. 101709
Author(s):  
Lijun Zeng ◽  
Jinfeng Wang ◽  
Jinshuo Zhang ◽  
Jun Lv ◽  
Wei Cui

Sign in / Sign up

Export Citation Format

Share Document