Chaotic and periodic solutions of the problem of fluid convection in a closed channel

1993 ◽  
Vol 27 (6) ◽  
pp. 783-788
Author(s):  
S. M. Drozdov
1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


1988 ◽  
Author(s):  
Y.-G. Oh ◽  
N. Sreenath ◽  
P. S. Krishnaprasad ◽  
J. E. Marsden

2016 ◽  
Vol 11 (2) ◽  
pp. 218-225
Author(s):  
V.S. Kuleshov

The results of a numerical modeling of thermo-gravitational convection of abnormally thermo-viscous fluid in a closed square cavity with two vertical adiabatic walls and two horizontal isothermal walls are presented. A model Newtonian liquid for which the dependence of viscosity on temperature is described by a bell function (Gaussian curve) is considered. The natural convection of inhomogeneous liquid is described by the closed mathematical model based on the continuous mechanics equations written in Oberbeck-Boussinesq approximation, where the fluid density is a linear function of temperature. To simulate the fluid flow dynamics, the modified computer code based on the implicit finite volume method and SIMPLE-type algorithm with the second-order temporal accuracy is realized using multiprocessor technology. The effect of the viscosity abnormality on stationary modes of convective flows are studied, the integral heat transfer coefficients in a flat cell are calculated.


Sign in / Sign up

Export Citation Format

Share Document