Double orientation tuning of cat visual cortical neurons

1984 ◽  
Vol 15 (5) ◽  
pp. 327-333 ◽  
Author(s):  
I. A. Shevelev ◽  
G. A. Sharaev ◽  
N. A. Lazareva ◽  
R. V. Novikova ◽  
A. S. Tikhomirov
2020 ◽  
Author(s):  
Lukas Klimmasch ◽  
Johann Schneider ◽  
Alexander Lelais ◽  
Bertram E. Shi ◽  
Jochen Triesch

AbstractThe development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereogramms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lukas Klimmasch ◽  
Johann Schneider ◽  
Alexander Lelais ◽  
Maria Fronius ◽  
Bertram Emil Shi ◽  
...  

The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.


2021 ◽  
Author(s):  
Michael Telias ◽  
Kevin Sit ◽  
Daniel Frozenfar ◽  
Benjamin Smith ◽  
Arjit Misra ◽  
...  

In degenerative retinal disorders, rod and cone photoreceptors die, causing vision impairment and blindness. Downstream neurons survive but undergo morphological and physiological remodeling, with some retinal ganglion cells (RGC) exhibiting heightened spontaneous firing. Retinoic acid (RA) has been implicated as the key signaling molecule that induces RGC hyperactivity, obscuring RGC light responses and reducing light avoidance behaviors triggered by residual rods and cones. However, evidence that RA-dependent remodeling corrupts image-forming vision has been lacking. Here we show that disulfiram, an FDA-approved drug that inhibits RA synthesis, and BMS 493, an RA receptor (RAR) inhibitor, reduce RGC hyperactivity and augment image detection in visually impaired mice. Functional imaging of visual cortical neurons shows that disulfiram and BMS 493 sharpen orientation-tuning and strengthen response fidelity to naturalistic scenes. These findings establish a causal link between RA-induced retinal hyperactivity and vision impairment and define molecular targets and candidate drugs for boosting image-forming vision in retinal degeneration.


2021 ◽  
Author(s):  
Benjamin Scholl ◽  
Clara Tepohl ◽  
Melissa A Ryan ◽  
Connon I Thomas ◽  
Naomi Kamasawa ◽  
...  

In the visual system, signals from the two eyes are combined to form a coherent representation through the convergence of synaptic input populations onto individual cortical neurons. As individual synapses originate from either monocular (representing one eye) or binocular (representing both eyes) cortical networks, it has been unclear how these inputs are integrated coherently. Here, we imaged dendritic spines on layer 2/3 binocular cells in ferret visual cortex with in vivo two-photon microscopy to examine how monocular and binocular synaptic networks contribute to the interocular alignment of orientation tuning. We found that binocular synapses varied in degree of "congruency", namely response correlation between left and right eye visual stimulation. Binocular congruent inputs were functionally distinct from binocular noncongruent and monocular inputs, exhibiting greater tuning selectivity and connection specificity. Using correlative light and electron microscopy, we found no difference in ultrastructural anatomy and instead, observed strength in numbers using a simple model simulating aggregate synaptic input. This model demonstrated a predominate contribution of binocular congruent inputs in sculpting somatic orientation preference and interocular response alignment. Our study suggests that, in layer 2/3 cortical neurons, a binocular network is responsible for forming a coherent representation in individual neurons through recurrent intracortical interactions.


2013 ◽  
Vol 30 (5-6) ◽  
pp. 315-330 ◽  
Author(s):  
SETH W. EGGER ◽  
KENNETH H. BRITTEN

AbstractMany complex behaviors rely on guidance from sensations. To perform these behaviors, the motor system must decode information relevant to the task from the sensory system. However, identifying the neurons responsible for encoding the appropriate sensory information remains a difficult problem for neurophysiologists. A key step toward identifying candidate systems is finding neurons or groups of neurons capable of representing the stimuli adequately to support behavior. A traditional approach involves quantitatively measuring the performance of single neurons and comparing this to the performance of the animal. One of the strongest pieces of evidence in support of a neuronal population being involved in a behavioral task comes from the signals being sufficient to support behavior. Numerous experiments using perceptual decision tasks show that visual cortical neurons in many areas have this property. However, most visually guided behaviors are not categorical but continuous and dynamic. In this article, we review the concept of sufficiency and the tools used to measure neural and behavioral performance. We show how concepts from information theory can be used to measure the ongoing performance of both neurons and animal behavior. Finally, we apply these tools to dorsal medial superior temporal (MSTd) neurons and demonstrate that these neurons can represent stimuli important to navigation to a distant goal. We find that MSTd neurons represent ongoing steering error in a virtual-reality steering task. Although most individual neurons were insufficient to support the behavior, some very nearly matched the animal’s estimation performance. These results are consistent with many results from perceptual experiments and in line with the predictions of Mountcastle’s “lower envelope principle.”


2008 ◽  
Vol 100 (3) ◽  
pp. 1476-1487 ◽  
Author(s):  
Bin Zhang ◽  
Earl L. Smith ◽  
Yuzo M. Chino

Vision of newborn infants is limited by immaturities in their visual brain. In adult primates, the transient onset discharges of visual cortical neurons are thought to be intimately involved with capturing the rapid succession of brief images in visual scenes. Here we sought to determine the responsiveness and quality of transient responses in individual neurons of the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys. We show that the transient component of neuronal firing to 640-ms stationary gratings was as robust and as reliable as in adults only 2 wk after birth, whereas the sustained component was more sluggish in infants than in adults. Thus the cortical circuitry supporting onset transient responses is functionally mature near birth, and our findings predict that neonates, known for their “impoverished vision,” are capable of initiating relatively mature fixating eye movements and of performing in detection of simple objects far better than traditionally thought.


2002 ◽  
Vol 22 (24) ◽  
pp. 10519-10523 ◽  
Author(s):  
Nicole C. Rust ◽  
Simon R. Schultz ◽  
J. Anthony Movshon

1984 ◽  
Vol 15 (4) ◽  
pp. 248-255
Author(s):  
N. A. Lazareva ◽  
R. V. Novikova ◽  
A. S. Tikhomirov ◽  
I. A. Shevelev ◽  
G. A. Sharaev

Sign in / Sign up

Export Citation Format

Share Document