Coding and counting spanning trees in Kleitman-Golden graphs

Cybernetics ◽  
1991 ◽  
Vol 27 (3) ◽  
pp. 311-319
Author(s):  
L. M. Koganov
Keyword(s):  

1984 ◽  
Author(s):  
I. V. Ramakrishnan ◽  
S. Pawagi


2007 ◽  
Vol 1 (1) ◽  
pp. 265-275 ◽  
Author(s):  
Chiang Tzuu-Shuh ◽  
Chow Yunshyong
Keyword(s):  


2021 ◽  
Vol 125 ◽  
pp. 102150
Author(s):  
Richard Ehrenborg




1992 ◽  
Vol 105 (1-3) ◽  
pp. 41-47 ◽  
Author(s):  
Robert James Douglas


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yi-Cheng Yang ◽  
Shih-Shun Kao ◽  
Ralf Klasing ◽  
Sun-Yuan Hsieh ◽  
Hsin-Hung Chou ◽  
...  


2021 ◽  
Vol 344 (5) ◽  
pp. 112282
Author(s):  
Nathan Albin ◽  
Jason Clemens ◽  
Derek Hoare ◽  
Pietro Poggi-Corradini ◽  
Brandon Sit ◽  
...  
Keyword(s):  


2020 ◽  
Vol 16 (1) ◽  
pp. 1-27
Author(s):  
Gopal Pandurangan ◽  
Peter Robinson ◽  
Michele Scquizzato


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.





Sign in / Sign up

Export Citation Format

Share Document