functional networks
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 421)

H-INDEX

65
(FIVE YEARS 13)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 174
Author(s):  
Cherry Yin-Yi Chang ◽  
An-Jen Chiang ◽  
Ming-Tsung Lai ◽  
Man-Ju Yan ◽  
Chung-Chen Tseng ◽  
...  

Infection-induced chronic inflammation is common in patients with endometriosis. Although microbial communities in the reproductive tracts of patients have been reported, little was known about their dynamic profiles during disease progression and complication development. Microbial communities in cervical mucus were collected by cervical swabs from 10 healthy women and 23 patients, and analyzed by 16S rRNA amplicon sequencing. The abundance, ecological relationships and functional networks of microbiota were characterized according to their prevalence, clinical stages, and clinical features including deeply infiltrating endometriosis (DIE), CA125, pain score and infertility. Cervical microbiome can be altered during endometriosis development and progression with a tendency of increased Firmicutes and decreased Actinobacteria and Bacteroidetes. Distinct from vaginal microbiome, upregulation of Lactobacillus, in combination with increased Streptococcus and decreased Dialister, was frequently associated with advanced endometriosis stages, DIE, higher CA125 levels, severe pain, and infertility. Significantly, reduced richness and diversity of cervical microbiome were detected in patients with more severe clinical symptoms. Clinical treatments against infertility can partially reverse the ecological balance of microbes through remodeling nutrition metabolism and transport and cell-cell/cell-matrix interaction. This study provides a new understanding on endometriosis development and a more diverse cervical microbiome may be beneficial for patients to have better clinical outcomes.


2021 ◽  
Vol 23 (1) ◽  
pp. 143
Author(s):  
Andrea Tirincsi ◽  
Mark Sicking ◽  
Drazena Hadzibeganovic ◽  
Sarah Haßdenteufel ◽  
Sven Lang

Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.


2021 ◽  
Author(s):  
Alberto Pisoni ◽  
Valentina Bianco ◽  
Eleonora Arrigoni ◽  
Francesco Di Russo ◽  
Leonor Josefina Romero Lauro

It is unclear whether the Bereitschaftspotential (BP) recorded in humans during action preparation mirrors motor areas activation escalation, or if its early and late phases reflect the engagement of different functional networks. Here, we aimed at recording the TMS evoked-potentials (TEP) stimulating the supplementary motor area (SMA) to assess whether and how cortical excitability and functional connectivity of this region change as the BP increases. We hypothesize that, at later stages, the SMA functional network should become more connected to regions relevant for the implementation of the final motor plan. We performed TMS-EEG recordings on fourteen healthy subjects during the performance of a visuomotor Go/No-go task, eliciting and recording cortical activity and functional connectivity at -700 ms and -300 ms before the onset of visual stimuli over the SMA. When approaching stimulus onset, and thus BP peak, the SMA increased its functional connectivity with movement-related structures in the gamma and alpha bands, indicating a regional top-down preparation to implement the motor act. Beta-band connectivity, instead, was maintained constant for the whole BP time-course, being potentially related to sustained attention required by the experimental task. These findings reveal that the BP is not a mere result of increased activation of the SMA, but the functional networks in which this region is involved qualitatively changes over time, becoming more related to the execution of the motor act.


2021 ◽  
Vol 15 ◽  
Author(s):  
Torben Noto ◽  
Guangyu Zhou ◽  
Qiaohan Yang ◽  
Gregory Lane ◽  
Christina Zelano

Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Zhang ◽  
Yingying Xie ◽  
Jie Tang ◽  
Wen Qin ◽  
Feng Liu ◽  
...  

Although recent evidence indicates an association between gene co-expression and functional connectivity in human brain, specific association patterns remain largely unknown. Here, using neuroimaging-based functional connectivity data of living brains and brain-wide gene expression data of postmortem brains, we performed comprehensive analyses to dissect relationships between gene co-expression and functional connectivity. We identified 125 connectivity-related genes (20 novel genes) enriched for dendrite extension, signaling pathway and schizophrenia, and 179 gene-related functional connections mainly connecting intra-network regions, especially homologous cortical regions. In addition, 51 genes were associated with connectivity in all brain functional networks and enriched for action potential and schizophrenia; in contrast, 51 genes showed network-specific modulatory effects and enriched for ion transportation. These results indicate that functional connectivity is unequally affected by gene expression, and connectivity-related genes with different biological functions are involved in connectivity modulation of different networks.


2021 ◽  
Author(s):  
Marian Hruska-Plochan ◽  
Katharina M Hembach ◽  
Silvia Ronchi ◽  
Vera I Wiersma ◽  
Zuzanna Maniecka ◽  
...  

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating these age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies, which involve human-specific mechanisms that cannot be directly studied in animal models. To explore the emergence and consequences of TDP-43 pathologies, we generated iPSC-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors. Single-cell transcriptomics (scRNA-seq) and comparison to independent NSCs, showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks. Neuronal and glial maturation in iCoMoNSC-derived cultures was similar to that of cortical organoids. Overexpression of wild-type TDP-43 in a minority of iCoMoNSC-derived neurons led to progressive fragmentation and aggregation, resulting in loss of function and neurotoxicity. scRNA-seq revealed a novel set of misregulated RNA targets coinciding in both TDP-43 overexpressing neurons and patient brains exhibiting loss of nuclear TDP-43. The strongest misregulated target encoded for the synaptic protein NPTX2, which was consistently misaccumulated in ALS and FTLD patient neurons with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby highlighting a new pathway of neurotoxicity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Haleigh N Mulholland ◽  
Bettina Hein ◽  
Matthias Kaschube ◽  
Gordon B Smith

Intracortical inhibition plays a critical role in shaping activity patterns in the mature cortex. However, little is known about the structure of inhibition in early development prior to the onset of sensory experience, a time when spontaneous activity exhibits long-range correlations predictive of mature functional networks. Here, using calcium imaging of GABAergic neurons in the ferret visual cortex, we show that spontaneous activity in inhibitory neurons is already highly organized into distributed modular networks before visual experience. Inhibitory neurons exhibit spatially modular activity with long-range correlations and precise local organization that is in quantitative agreement with excitatory networks. Furthermore, excitatory and inhibitory networks are strongly co-aligned at both millimeter and cellular scales. These results demonstrate a remarkable degree of organization in inhibitory networks early in the developing cortex, providing support for computational models of self-organizing networks and suggesting a mechanism for the emergence of distributed functional networks during development.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6127
Author(s):  
Nardin Samuel ◽  
Artur Vetkas ◽  
Aditya Pancholi ◽  
Can Sarica ◽  
Aaron Loh ◽  
...  

The evaluation and manipulation of structural and functional networks, which has been integral to advancing functional neurosurgery, is beginning to transcend classical subspecialty boundaries. Notably, its application in neuro-oncologic surgery has stimulated an exciting paradigm shift from the traditional localizationist approach, which is lacking in nuance and optimization. This manuscript reviews the existing literature and explores how structural and functional connectivity analyses have been leveraged to revolutionize and individualize pre-operative tumor evaluation and surgical planning. We describe how this novel approach may improve cognitive and neurologic preservation after surgery and attenuate tumor spread. Furthermore, we demonstrate how connectivity analysis combined with neuromodulation techniques can be employed to induce post-operative neuroplasticity and personalize neurorehabilitation. While the landscape of functional neuro-oncology is still evolving and requires further study to encourage more widespread adoption, this functional approach can transform the practice of neuro-oncologic surgery and improve the care and outcomes of patients with intra-axial tumors.


2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Elisa Canu ◽  
Davide Calderaro ◽  
Veronica Castelnovo ◽  
Michela Leocadi ◽  
Silvia Basaia ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 116-116
Author(s):  
Rozalyn Anderson

Abstract Caloric restriction (CR) delays aging and the onset of age-related disease in diverse species. Several diseases of aging including diabetes, cancer, and neurodegeneration, have an established metabolic component. Although the mechanisms of CR remain unknown, numerous factors implicated in longevity regulation by CR converge on regulation of metabolism. The reprograming of metabolism with CR is tissue specific, but mitochondrial activation and changes in redox metabolism are among the shared features. Changes in non-coding miRNA and in processing of transcripts are contributing mechanisms in integrating metabolic and growth pathways. Our studies in simple cell culture shows that small changes in metabolic status can precipitate large-scale multi-modal functional changes across cellular processes. We propose that modest failures in metabolic integrity with age broadly impact homeostasis and adaptation, creating shared vulnerability to diseases and conditions despite differences in their etiology, and that CR harnesses this same axis to promote health and enhanced longevity.


Sign in / Sign up

Export Citation Format

Share Document