Stability of a supersonic boundary layer on a permeable surface with heat transfer

1977 ◽  
Vol 12 (1) ◽  
pp. 33-38 ◽  
Author(s):  
S. A. Gaponov
1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


2015 ◽  
Vol 06 (03) ◽  
pp. 466-475 ◽  
Author(s):  
Nor Azian Aini Mat ◽  
Norihan Md. Arifin ◽  
Roslinda Nazar ◽  
Norfifah Bachok

Author(s):  
C. Hürst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high speed boundary layer nozzle flows under engine Reynolds-number conditions (U∞ = 230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 · 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, non-symmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low Reynolds-number k-ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


Sign in / Sign up

Export Citation Format

Share Document