scholarly journals Turbulent flow topology in supersonic boundary layer with wall heat transfer

2019 ◽  
Vol 78 ◽  
pp. 108430 ◽  
Author(s):  
S. Sharma ◽  
M.S. Shadloo ◽  
A. Hadjadj
Author(s):  
R. E. Mayle ◽  
K. Dullenkopf

A theory for transition from laminar to turbulent flow as the result of unsteady, periodic passing of turbulent wakes in the free stream is developed using Emmons’ transition model. Comparisons made to flat plate boundary layer measurements and airfoil heat transfer measurements confirm the theory.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


Author(s):  
Tapish Agarwal ◽  
Iman Rahbari ◽  
Jorge Saavedra ◽  
Guillermo Paniagua ◽  
Beni Cukurel

Abstract The behavioral characteristics of thermal boundary layer dictate the relative efficiency of forced convection heat transfer. This research effort is related to the detailed analysis of the temporal evolution of thermal boundary layer under periodic excitations. In presence of oscillations, a distinct thin Stokes layer is formed inside the attached boundary layer, which interacts nonlinearly with the mean flow in the near wall region. This interaction leads to modification of temporally averaged flow fields, commonly known as acoustic streaming. As a result, the aero-thermal wall gradients are modified leading to significant changes in wall shear stress and heat flux. However, the small spatial scales and the inherent unsteady nature of streaming has presented challenges for prior numerical investigations, preventing the identification of optimal parameters. In order to address this void in numerical framework, the development of a three-tier numerical approach is presented. As a first layer of fidelity, a laminar model is developed for fluctuations and streaming flow calculations in laminar flows subjected to travelling wave disturbances. This technique is an extension of the Lin’s method to traveling wave disturbances of various speeds (absent of previously employed assumptions), along with inclusion of energy equation. With low computational cost, this level of abstraction is intended to identify the broad parameter space that yield desirable heat transfer alterations. At the next level of fidelity, 2D U-RANS simulations are conducted across both laminar and turbulent flow regimes. This is geared towards extending the parameter space obtained from laminar model to turbulent flow conditions. As the third level of fidelity, temporally and spatially resolved DNS simulations are conducted to simulate the application relevant compressible flow environment. The exemplary findings indicate that in certain parameter space, both enhancement and reduction in heat transfer can be obtained through acoustic streaming. Moreover, the extent of heat transfer modulations is greater than alterations in wall shear, thereby surpassing Reynolds analogy.


2008 ◽  
Vol 612 ◽  
pp. 81-105 ◽  
Author(s):  
D. R. SABATINO ◽  
C. R. SMITH

The properties of artificially initiated turbulent spots over a heated plate were investigated in a water channel. The instantaneous velocity field and surface Stanton number were simultaneously established using a technique that combines particle image velocimetry and thermochromic liquid crystal thermography. Several characteristics of a spot are found to be similar to those of a turbulent boundary layer. The spacing of the surface heat transfer streak patterns within the middle or ‘body’ of a turbulent spot are comparable to the low-speed streak spacing within a turbulent boundary layer. Additionally, the surface shear stress in the same region of a spot is also found to be comparable to a turbulent boundary layer. However, despite these similarities, the heat transfer within the spot body is found to be markedly less than the heat transfer for a turbulent boundary layer. In fact, the highest surface heat transfer occurs at the trailing or calmed region of a turbulent spot, regardless of maturity. Using a modified set of similarity coordinates, instantaneous two-dimensional streamlines suggest that turbulent spots entrain and subsequently recirculate warm surface fluid, thereby reducing the effective heat transfer within the majority of the spot. It is proposed that energetic vortices next to the wall, near the trailing edge of the spot body, are able to generate the highest surface heat transfer because they have the nearest access to cooler free-stream fluid.


Sign in / Sign up

Export Citation Format

Share Document