Laminar-to-turbulent transition in supersonic boundary layer: Effects of initial perturbation and wall heat transfer

2018 ◽  
Vol 73 (9) ◽  
pp. 583-603 ◽  
Author(s):  
S. Sharma ◽  
M. S. Shadloo ◽  
A. Hadjadj
Author(s):  
Alexander Kosinov ◽  
Nikolai Semionov ◽  
Yury Yermolaev ◽  
Boris Smorodsky ◽  
Gleb Kolosov ◽  
...  

The paper is devoted to an experimental and theoretical study of effect of moderate angle-of-attack variation on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach 2. Monotonous growth of the transition Reynolds numbers with angle of attack increasing from −2° to 2.7° is confirmed. For the same conditions, calculations based on linear stability theory are performed. The experimental and computational results show a favourable comparison.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


2012 ◽  
Vol 455-456 ◽  
pp. 1153-1159
Author(s):  
Qiang Wang ◽  
Zhao Yuan Guo ◽  
Guo Tai Feng

The investigation was to study the effect of laminar-turbulent transition on predicting thermal load of vane. The Abu-Ghannam and Shaw (AGS) algebraic transition model was applied in the coupled solver, HIT3D. Then the solver was employed to carry out coupled heat transfer simulations, and the test case was 5411 run of NASA0-MARKⅡ vane, a high-pressure turbine vane. The results shown that AGS model was able to predict the transition process in the boundary layer near the vane, and that the simulation with such model leads to thermal load agreeing well the measured one. Then the developed solver was applied to predict a low-pressure vane, and the results shown that CHT simulation with full turbulence model would predict higher thermal load than that with transition model.


Author(s):  
Paul W. Giel ◽  
Ronald S. Bunker ◽  
G. James Van Fossen ◽  
Robert J. Boyle

Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the design point of 628,000, −20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design point of 1:378, −10%, and +10%. Inlet incidence angles of 0 deg and ±2 deg were also examined. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.


Sign in / Sign up

Export Citation Format

Share Document