nozzle wall
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 146808742098518
Author(s):  
Manolis Gavaises ◽  
Mithun Murali-Girija ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Martin Gold ◽  
...  

The present work describes a numerical methodology and its experimental validation of the flow development inside and outside of the orifices during a pilot injection, dwelt time and the subsequent start of injection cycle. The compressible Navier-Stokes equations are numerically solved in a six-hole injector imposing realistic conditions of the needle valve movement and considering in addition a time-dependent eccentric motion. The valve motion is simulated using the immersed boundary method; this allows for simulations to be performed at zero lift during the dwelt time between successive injections, where the needle remains closed. Moreover, the numerical model utilises a fully compressible two-phase (liquid, vapour) two-component (fuel, air) barotropic model. The air’s motion is simulated with an additional transport equation coupled with the VOF interface capturing method able to resolve the near-nozzle atomisation and the resulting impact of the injected liquid on the oleophilic nozzle wall surfaces. The eccentric needle motion is found to be responsible for the formation of strong swirling flows inside the orifices, which not only contributes to the breakup of the injected liquid jet into ligaments but also to their backwards motion towards the external wall surface of the injector. Model predictions suggest that such nozzle wall wetting phenomena are more pronounced during the closing period of the valve and the re-opening of the nozzle, due to the residual gases trapped inside the nozzle, and which contribute to the poor atomisation of the injected fluid upon re-opening of the needle valve in subsequent injection events.


Author(s):  
Jie Shi ◽  
Li Zhou ◽  
Zhanxue Wang ◽  
Jingwei Shi

Abstract Stealth performance is one of the most important factors to evaluate the technical level of modern battleplane. Serpentine nozzle can block the direct radiation transmission path between the high-temperature components in exhaust system and the infrared detector, thus suppressing the infrared radiation signature. However, due to the reflection characteristics of nozzle wall, this method can also cause indirect transmission of infrared radiation through the wall reflection to form a local high radiation area. Motivated by previous researches on the application of serpentine nozzle wall coating in electromagnetic radiation suppression. Wall coating is applied to serpentine nozzle to suppress infrared radiation intensity in this paper. Aiming at the situation of turbofan engine using serpentine nozzle, the influence mechanism of coating position, area and emissivity of serpentine nozzle on infrared radiation signature is calculated and analyzed, and the scheme of wall coating which has the least coating area and can effectively suppress infrared radiation transmission is also studied. The results show that reducing wall coating emissivity will strengthen the indirect transmission of infrared radiation, then cause the increase of exhaust system infrared radiation intensity, while increasing wall coating emissivity will reduce wall coating reflectivity, and the local high radiation area caused by indirect radiation transmission can be effectively prevented. The research also found that the infrared radiation signature of exhaust system can be effected only when the emissivity adjustment of serpentine nozzle wall which can be detected directly by infrared detector. After adopting the optimized wall emissivity coating scheme, the infrared radiation intensity of serpentine nozzle for turbofan can be reduced by 51.3% on the original basis while the coating area only accounts for 25.1% of the nozzle area.


2019 ◽  
Vol 60 (11) ◽  
Author(s):  
Dominik Saile ◽  
Viktor Kühl ◽  
Ali Gülhan

Abstract The Ariane 5 failure flight 157 made clear that the loads in the base region of space launcher configurations were underestimated and its near-wake dynamics required more attention. In the recent years, many studies have been published on buffet/buffeting in the critical high subsonic flow regime. Nevertheless, not much experimental data are available on the interaction of the ambient flow with an exhaust jet over a wide subsonic Mach number range. Further, a preceding study without exhaust jet revealed questions regarding a similar distribution of the velocity and Reynolds stress in the near-wake if scaled with the reattachment length. Consequently, a generic space launcher configuration featuring a cold, supersonic, over-expanded jet is investigated experimentally in the vertical test section Cologne (VMK) by means of particle image velocimetry (PIV) for five subsonic Mach numbers ranging from 0.5 to 0.9 with corresponding Reynolds numbers between $$Re_{\text {D}}=0.8\times 10^6$$ReD=0.8×106 to $$1.6\times 10^6$$1.6×106. The velocity and Reynolds stress distribution are provided for the near-wake flow and additionally for the incoming boundary layer. Just as in the preceding study, self-similar features are found in the flow field as long as the separated shear layer reattaches on the solid nozzle wall. Substantial changes are then measured for an alternating (hybrid) reattachment between the solid nozzle wall and supersonic exhaust jet as found for Mach 0.8, one of them being the increased axial turbulence in the recirculation bubble due to a ‘dancing’ large-scale, clockwise-rotating vortex. Graphic abstract


Author(s):  
R. Naren Shankar ◽  
S. Thanigaiarasu ◽  
S. Elangovan ◽  
E. Rathakrishnan

Abstract The control of co-flowing jets by varying lip thickness has been studied experimentally. Lip thickness is defined as the thickness of primary nozzle wall separating primary jet and secondary jet at the co-flowing nozzle exit. Co-flowing jets from a primary nozzle of diameter 10 mm (1.0 Dp) and a secondary duct with lip thickness (LT) 0.2 Dp, 1.0 Dp and 1.5 Dp at Mach numbers 0.6, 0.8 and 1.0 have been studied. Jet centreline total pressure decay, static pressure variation and jet mixing behaviour were analysed. The results show that the mixing of the co-flowing jet with substantial values of lip thickness is superior to the co-flowing jets with comparatively lower values of lip thickness. Co-flowing jets with lip thickness 1.0 Dp and 1.5 Dp experience a significantly higher mixing than the lip thickness 0.2 Dp jet, for all Mach numbers analyzed in the present study. Moreover, in the case of correctly expanded jets, the local static pressure is assumed to be equal to atmospheric pressure. This assumption becomes invalid for co-flowing jets with substantial lip thickness. The centerline static pressure varies sinusoidally above and below atmospheric pressure by a maximum of 11 %, which is due to wake dominance.


2017 ◽  
Vol 17 (6) ◽  
pp. 250-256 ◽  
Author(s):  
Jana Jablonská ◽  
Miroslav Mahdal ◽  
Milada Kozubková

Abstract The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.


Sign in / Sign up

Export Citation Format

Share Document