Solving systems of polynomial inequalities over a real closed field in subexponential time

1991 ◽  
Vol 55 (2) ◽  
pp. 1519-1540 ◽  
Author(s):  
N. N. Vorob'ev ◽  
D. Yu. Grigor'ev
1994 ◽  
Vol 1 (3) ◽  
pp. 277-286
Author(s):  
G. Khimshiashvili

Abstract It is shown that the cardinality of a finite semi-algebraic subset over a real closed field can be computed in terms of signatures of effectively constructed quadratic forms.


2009 ◽  
Vol 52 (2) ◽  
pp. 224-236
Author(s):  
Riccardo Ghiloni

AbstractLetRbe a real closed field, letX⊂Rnbe an irreducible real algebraic set and letZbe an algebraic subset ofXof codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset ofXof codimension 1 containingZ. We improve this dimension theorem as follows. Indicate by μ the minimum integer such that the ideal of polynomials inR[x1, … ,xn] vanishing onZcan be generated by polynomials of degree ≤ μ. We prove the following two results: (1) There exists a polynomialP∈R[x1, … ,xn] of degree≤ μ+1 such thatX∩P–1(0) is an irreducible algebraic subset ofXof codimension 1 containingZ. (2) LetFbe a polynomial inR[x1, … ,xn] of degreedvanishing onZ. Suppose there exists a nonsingular pointxofXsuch thatF(x) = 0 and the differential atxof the restriction ofFtoXis nonzero. Then there exists a polynomialG∈R[x1, … ,xn] of degree ≤ max﹛d, μ + 1﹜ such that, for eacht∈ (–1, 1) \ ﹛0﹜, the set ﹛x∈X|F(x) +tG(x) = 0﹜ is an irreducible algebraic subset ofXof codimension 1 containingZ. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.


1978 ◽  
Vol 43 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Michael F. Singer

In this paper, we show that the theory of ordered differential fields has a model completion. We also show that any real differential field, finitely generated over the rational numbers, is isomorphic to some field of real meromorphic functions. In the last section of this paper, we combine these two results and discuss the problem of deciding if a system of differential equations has real analytic solutions. The author wishes to thank G. Stengle for some stimulating and helpful conversations and for drawing our attention to fields of real meromorphic functions.§ 1. Real and ordered fields. A real field is a field in which −1 is not a sum of squares. An ordered field is a field F together with a binary relation < which totally orders F and satisfies the two properties: (1) If 0 < x and 0 < y then 0 < xy. (2) If x < y then, for all z in F, x + z < y + z. An element x of an ordered field is positive if x > 0. One can see that the square of any element is positive and that the sum of positive elements is positive. Since −1 is not positive, an ordered field is a real field. Conversely, given a real field F, it is known that one can define an ordering (not necessarily uniquely) on F [2, p. 274]. An ordered field F is a real closed field if: (1) every positive element is a square, and (2) every polynomial of odd degree with coefficients in F has a root in F. For example, the real numbers form a real closed field. Every ordered field can be embedded in a real closed field. It is also known that, in a real closed field K, polynomials satisfy the intermediate value property, i.e. if f(x) ∈ K[x] and a, b ∈ K, a < b, and f(a)f(b) < 0 then there is a c in K such that f(c) = 0.


1992 ◽  
Vol 44 (6) ◽  
pp. 1262-1271 ◽  
Author(s):  
Murray Marshall

AbstractThe results obtained extend Madden’s result for Dedekind domains to more general types of 1-dimensional Noetherian rings. In particular, these results apply to piecewise polynomial functions t:C → R where R is a real closed field and C ⊆ Rn is a closed 1-dimensional semi-algebraic set, and also to the associated “relative” case where t, C are defined over some subfield K ⊆ R.


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


2006 ◽  
Vol 49 (1) ◽  
pp. 11-20
Author(s):  
Anthony J. Bevelacqua ◽  
Mark J. Motley

AbstractWe search for theorems that, given a Ci-field K and a subfield k of K, allow us to conclude that k is a Cj -field for some j. We give appropriate theorems in the case K = k(t) and K = k((t)). We then consider the more difficult case where K/k is an algebraic extension. Here we are able to prove some results, and make conjectures. We also point out the connection between these questions and Lang's conjecture on nonreal function fields over a real closed field.


1995 ◽  
Vol 60 (3) ◽  
pp. 817-831 ◽  
Author(s):  
Michael C. Laskowski ◽  
Charles Steinhorn

AbstractWe study o-minimal expansions of Archimedean totally ordered groups. We first prove that any such expansion must be elementarily embeddable via a unique (provided some nonzero element is 0-definable) elementary embedding into a unique o-minimal expansion of the additive ordered group of real numbers . We then show that a definable function in an o-minimal expansion of enjoys good differentiability properties and use this to prove that an Archimedean real closed field is definable in any nonsemilinear expansion of . Combining these results, we obtain several restrictions on possible o-minimal expansions of arbitrary Archimedean ordered groups and in particular of the rational ordered group.


Sign in / Sign up

Export Citation Format

Share Document