Solvent-extraction equilibria in reprocessing fast-reactor uranium-plutonium fuel

1978 ◽  
Vol 44 (5) ◽  
pp. 487-492 ◽  
Author(s):  
V. E. Vereshchagin ◽  
�. V. Renard
2021 ◽  
Vol 66 (3) ◽  
pp. 9-12
Author(s):  
A. Lyaginskaya ◽  
N. Shandala ◽  
E. Metlyaev ◽  
V. Kuptsov ◽  
O. Parinov

Purpose: To identify the problem of assessing the health status of personnel working under the conditions of new technologies for the production of nuclear fuel. Material and method: The object of the research was the general morbidity of workers in the production of mixed nitride uranium-plutonium fuel (MNUP-fuel). The material for the study was the data presented in the «Health Passports». The paper used the method of comparative analysis of the overall morbidity of workers in the production of MNUP-fuel and workers in enterprises dealing with nuclear fuel. Results and analysis: At present, in our country, within the framework of the «Breakthrough» project, new technologies are being developed for the fabrication and refurbishment of mixed uranium-plutonium (MNUP) fuel. In the absence of radiation and hygienic standards for the content of fuel products in working rooms, in order to assess the influence of production factors, along with the radiation dose, the incidence of personnel is studied as an integral indicator of health. A study of the incidence of 50 workers in the production of MNUP fuel revealed: Relatively high incidence of general morbidity – 1122 diseases per 100 people or an average of 93.5 diseases per 100 people per year, regardless of the length of service. The leading diseases in the overall morbidity structure are diseases of the respiratory system – 26.0 % (1st place), eyes – 13.4 % (2nd place), musculoskeletal system – 11.4 % (3rd place), circulatory system – 10,9 % (4th place), injuries and poisoning – 8.4 % (5th place), digestive organs and genitourinary system – 7.7 % and 7.0 %, respectively (6th place), which make up 84.7 % of the total morbidity. Obviously, the effective dose of 4.6 mSv/year cannot be the only reason for the high morbidity in workers in complex radiochemical production, but characterizes only the influence of one of the many nonspecific factors of production. The existing system for assessing the health of personnel working in radiochemical production, in addition to analyzing the risks of deterministic and stochastic effects, should include an assessment of the overall morbidity of personnel.


Author(s):  
Gregory Choppin ◽  
Claude Musikas ◽  
Tatsuya Sekine ◽  
Jan Rydberg

2019 ◽  
Vol 107 (9-11) ◽  
pp. 917-929 ◽  
Author(s):  
Rikard Malmbeck ◽  
Daniel Magnusson ◽  
Stéphane Bourg ◽  
Michael Carrott ◽  
Andreas Geist ◽  
...  

Abstract The EURO-GANEX process was developed for co-separating transuranium elements from irradiated nuclear fuels. A hot flow-sheet trial was performed in a counter-current centrifugal contactor setup, using a genuine high active feed solution. Irradiated mixed (carbide, nitride) U80Pu20 fast reactor fuel containing 20 % Pu was thermally treated to oxidise it to the oxide form which was then dissolved in HNO3. From this solution uranium was separated to >99.9 % in a primary solvent extraction cycle using 1.0 mol/L DEHiBA (N,N-di(2-ethylhexyl)isobutyramide in TPH (hydrogenated tetrapropene) as the organic phase. The raffinate solution from this process, containing 10 g/L Pu, was further processed in a second cycle of solvent extraction. In this EURO-GANEX flow-sheet, TRU and fission product lanthanides were firstly co-extracted into a solvent composed of 0.2 mol/L TODGA (N,N,N′,N′-tetra-n-octyl diglycolamide) and 0.5 mol/L DMDOHEMA (N,N′-dimethyl-N,N′-dioctyl-2-(2-hexyloxy-ethyl) malonamide) dissolved in Exxsol D80, separating them from most other fission and corrosion products. Subsequently, the TRU were selectively stripped from the collected loaded solvent using a solution containing 0.055 mol/L SO3-Ph-BTP (2,6-bis(5,6-di(3-sulphophenyl)-1,2,4-triazin-3-yl)pyridine tetrasodium salt) and 1 mol/L AHA (acetohydroxamic acid) in 0.5 mol/L HNO3; lanthanides were finally stripped using 0.01 mol/L HNO3. Approximately 99.9 % of the TRU and less than 0.1 % of the lanthanides were found in the product solution, which also contained the major fractions of Zr and Mo.


1976 ◽  
Vol 38 (5) ◽  
pp. 1057-1060 ◽  
Author(s):  
Masaru Niitsu ◽  
Tatsuya Sekine

Sign in / Sign up

Export Citation Format

Share Document